Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34771285

ABSTRACT

In this work, an efficient 3-step process targeting the chemical modification and purification of lignin oligomers from industrial alkaline lignin is described. The oxidative depolymerization process of alkaline lignin with O2 or Air pressure, without use of metal catalyst, led to the production of two fractions of lignin oligomers named 'precipitated lignin' and 'hydrosoluble lignin' with 40% and 60% yield, respectively. These fractions were characterized with a wide range of methods including NMR spectroscopy (31P, 2D-HSQC), SEC (in basic media), FTIR. NMR analyses revealed the presence of carboxylic acid functions at a ratio of 1.80 mmol/g and 2.80 mmol/g for the precipitated and hydrosoluble lignin, respectively, values much higher than what is generally found in native lignin (between 0.2 and 0.5 mmol/g). SEC analyses revealed the formation of low molar masses for the precipitated (2200 g/mol) and hydrosoluble fractions (1500 g/mol) in contrast to the alkaline lignin (3900 g/mol). It is worth noting that the hydrosoluble fraction of lignin is soluble in water at any pH. Both processes (oxygen and air) were successfully scaled up and showed similar results in terms of yield and functionalization.

2.
RSC Adv ; 10(54): 32959-32965, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-35516484

ABSTRACT

Lignin is one of the most abundant renewable materials on the earth. Despite possessing useful antioxidant and UV absorbing properties, its effective utilization in technology has been hampered by its relative insolubility and difficulty to process. In this work, a simple chemical derivatization process is utilized which yields water-soluble lignin possessing anionic carboxylate groups. These carboxylate groups give lignin polyanionic behavior and enable its utilization in the growth of a functional film via layer-by-layer (LbL) assembly with biologically sourced chitosan. The growth mechanism of this film is hypothesized to be a result of both hydrogen bonding and ionic interactions. The film demonstrates excellent UV-absorptive capability. A 100 nm thick chitosan/lignin coating was applied to a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film and shown to reduce its degradation sixfold over the course of a 1 hour exposure to harsh UV light. This is the first demonstration of lignin being utilized in a fully biologically derived LbL film. Utilization of lignin in LbL assembly is an important step in the development of renewable nanotechnology.

SELECTION OF CITATIONS
SEARCH DETAIL
...