Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 159(2): 301-312, 2000 Nov 06.
Article in English | MEDLINE | ID: mdl-11074283

ABSTRACT

In order to clarify the physiological roles of the cytosolic forms of glutamine synthetase (GS) in Medicago truncatula, we have performed a detailed analysis of the expression of the two functional cytosolic GS genes, MtGSa and MtGSb in several organs of the plant. Transcriptional fusions were made between the 2.6 or 3.1 kbp 5' upstream regions of MtGSa or MtGSb, respectively, and the reporter gene gusA encoding beta-glucuronidase and introduced into the homologous transgenic system. MtGSa and MtGSb were found to be differentially expressed in most of the organs, both temporally and spatially. The presence of GS proteins at the sites where the promoters were active was confirmed by immunocytochemistry, providing the means to correlate gene expression with the protein products. These studies have shown that the putative MtGSa and MtGSb promoter fragments were sufficient to drive GUS expression in all the tissues and cell types where cytosolic GS proteins were located. This result indicates that the cis acting regulatory elements responsible for conferring the contrasting expression patterns are located within the region upstream of the coding sequences. MtGSa was preferentially expressed in the vascular tissues of almost all the organs examined, whereas MtGSb was preferentially expressed in the root cortex and in leaf pulvini. The location and high abundance of GS in the vascular tissues of almost all the organs analysed suggest that the enzyme encoded by MtGSa plays an important role in the production of nitrogen transport compounds. The enzyme synthesised by MtGSb appears to have more ubiquitous functions for ammonium assimilation and detoxification in a variety of organs.

2.
Mol Plant Microbe Interact ; 11(7): 659-67, 1998 Jul.
Article in English | MEDLINE | ID: mdl-9650298

ABSTRACT

The soilborne, vascular pathogen Ralstonia solanacearum, the causative agent of bacterial wilt, was shown to infect a range of Arabidopsis thaliana accessions. The pathogen was capable of infecting the Col-5 accession in an hrp-dependent manner, following root inoculation. Elevated bacterial population levels were found in leaves of Col-5, 4 to 5 days after root inoculation by the GMI1000 strain. Bacteria were found predominantly in the xylem vessels and spread systematically throughout the plant. The Nd-1 accession of A. thaliana was resistant to the GMI1000 strain of R. solanacearum. Bacterial concentrations detected in leaves of Nd-1, inoculated with an hrp+ strain of R. solanacearum, were only slightly higher than those detected in the susceptible accession, Col-5, following inoculation with a strain whose hrp gene cluster was deleted. Leaf inoculation of the GMI1000 strain on the resistant accession Nd-1 induced the formation of lesions in the older leaves of the rosette whereas the same strain of R. solanacearum provoked complete wilting of Col-5. Resistance to strain GMI1000 of R. solanacearum segregated as a simply inherited recessive trait in a genetic cross between Col-5 and Nd-1. F9 recombinant inbred lines generated between these two accessions were used to map a locus, RRS1, that was the major determinant of resistance between restriction fragment length polymorphism markers mi83 and mi61 on chromosome V. This region of the A. thaliana genome is known to contain many other pathogen recognition capabilities.


Subject(s)
Arabidopsis/physiology , Chromosome Mapping , Genes, Plant , Gram-Negative Aerobic Rods and Cocci/pathogenicity , Arabidopsis/genetics , Immunity, Innate , Plant Diseases , Plant Leaves , Plant Roots
3.
Plant Cell ; 2(12): 1157-1170, 1990 Dec.
Article in English | MEDLINE | ID: mdl-12354952

ABSTRACT

Rhizobium meliloti trc genes controlling the catabolism of trigonelline, a plant secondary metabolite often abundant in legumes, are closely linked to nif-nod genes on the symbiotic megaplasmid pSym [Boivin, C., Malpica, C., Rosenberg, C., Denarie, J., Goldman, A., Fleury, V., Maille, M., Message, B., and Tepfer, D. (1989). In Molecular Signals in the Microbe-Plant Symbiotic and Pathogenic Systems. (Berlin: Springer-Verlag), pp. 401-407]. To investigate the role of trigonelline catabolism in the Rhizobium-legume interaction, we studied the regulation of trc gene expression in free-living and in endosymbiotic bacteria using Escherichia coli lacZ as a reporter gene. Experiments performed with free-living bacteria indicated that trc genes were organized in at least four transcription units and that the substrate trigonelline was a specific inducer for three of them. Noninducing trigonelline-related compounds such as betaines appeared to antagonize the inducing effect of trigonelline. None of the general or symbiotic regulatory genes ntrA, dctB/D, or nodD seemed to be involved in trigonelline catabolism. trc fusions exhibiting a low basal and a high induced [beta]-galactosidase activity when present on pSym were used to monitor trc gene expression in alfalfa tissue under symbiotic conditions. Results showed that trc genes are induced during all the symbiotic steps, i.e., in the rhizosphere, infection threads, and bacteroids of alfalfa, suggesting that trigonelline is a nutrient source throughout the Rhizobium-legume association.

4.
J Bacteriol ; 172(8): 4295-306, 1990 Aug.
Article in English | MEDLINE | ID: mdl-2376562

ABSTRACT

Bacteroid differentiation was examined in developing and mature alfalfa nodules elicited by wild-type or Fix- mutant strains of Rhizobium meliloti. Ultrastructural studies of wild-type nodules distinguished five steps in bacteroid differentiation (types 1 to 5), each being restricted to a well-defined histological region of the nodule. Correlative studies between nodule development, bacteroid differentiation, and acetylene reduction showed that nitrogenase activity was always associated with the differentiation of the distal zone III of the nodule. In this region, the invaded cells were filled with heterogeneous type 4 bacteroids, the cytoplasm of which displayed an alternation of areas enriched with ribosomes or with DNA fibrils. Cytological studies of complementary halves of transversally sectioned mature nodules confirmed that type 4 bacteroids were always observed in the half of the nodule expressing nitrogenase activity, while the presence of type 5 bacteroids could never be correlated with acetylene reduction. Bacteria with a transposon Tn5 insertion in pSym fix genes elicited the development of Fix- nodules in which bacteroids could not develop into the last two ultrastructural types. The use of mutant strains deleted of DNA fragments bearing functional reiterated pSym fix genes and complemented with recombinant plasmids, each carrying one of these fragments, strengthened the correlation between the occurrence of type 4 bacteroids and acetylene reduction. A new nomenclature is proposed to distinguish the histological areas in alfalfa nodules which account for and are correlated with the multiple stages of bacteroid development.


Subject(s)
Bacteroides/ultrastructure , Medicago sativa/ultrastructure , Nitrogen Fixation , Bacteroides/genetics , Bacteroides/metabolism , DNA, Bacterial/genetics , Medicago sativa/metabolism , Medicago sativa/microbiology , Microscopy, Electron , Mutation , Nitrogenase/metabolism , Phenotype , Plasmids , Restriction Mapping
5.
J Bacteriol ; 157(1): 134-42, 1984 Jan.
Article in English | MEDLINE | ID: mdl-6690420

ABSTRACT

The pSym megaplasmid of Rhizobium meliloti 2011 mobilized by plasmid RP4, or plasmid pGMI42, an RP4-prime derivative which carries a 290-kilobase pSym fragment including nitrogenase and nod genes, was introduced into Agrobacterium tumefaciens. The resulting transconjugants induced root deformations specifically on the homologous hosts Medicago sativa and Melilotus alba and not on the heterologous hosts Trifolium pratense and Trifolium repens. The root deformations were shown to be genuine nodules by physiological and cytological studies. Thus, host specificity nodulation genes are located on the pSym megaplasmid. Host nodulation specificity did not seem to require recognition at the root hair level since no infection threads could be detected in the root hairs. Cytological observations indicated that bacteria penetrated only the superficial layers of the host root tissue by an atypical infection process. The submeristematic zone and the central tissue of the nodules were bacteria free. Thus, nodule organogenesis was probably triggered from a distance by the bacteria. Agrobacterium transconjugants carrying pSym induced the formation of more numerous and larger nodules than those carrying the RP4-prime plasmid pGMI42, suggesting that some genes influencing nodule organogenesis are located in a pSym region(s) outside that which has been cloned into pGMI42.


Subject(s)
Genes, Bacterial , Plant Diseases , Plasmids , Rhizobium/genetics , Rhizobium/pathogenicity , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...