Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 4970, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35322069

ABSTRACT

Kobresia plants are important forage resources on the Qinghai-Tibet Plateau and are essential in maintaining the ecological balance of grasslands. Therefore, it is beneficial to obtain Kobresia genome resources and study the adaptive characteristics of Kobresia plants on the Qinghai-Tibetan Plateau. Previously, we have assembled the genome of Carex littledalei (Kobresia littledalei), which is a diploid with 29 chromosomes. In this study, we assembled genomes of Carex parvula (Kobresia pygmaea) and Carex kokanica (Kobresia royleana) via using Illumina and PacBio sequencing data, which were about 783.49 Mb and 673.40 Mb in size, respectively. And 45,002 or 36,709 protein-coding genes were further annotated in the genome of C. parvula or C. kokanica. Phylogenetic analysis indicated that Kobresia in Cyperaceae separated from Poaceae about 101.5 million years ago after separated from Ananas comosus in Bromeliaceae about 117.2 million years ago. C. littledalei and C. parvula separated about 5.0 million years ago, after separated from C. kokanica about 6.2 million years ago. In this study, transcriptome data of C. parvula at three different altitudes were also measured and analyzed. Kobresia plants genomes assembly and transcriptome analysis will assist research into mechanisms of plant adaptation to environments with high altitude and cold weather.


Subject(s)
Carex Plant , Cyperaceae , Genome, Plant , Phylogeny , Tibet
2.
Sci Data ; 7(1): 175, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32528014

ABSTRACT

Kobresia plants are important forage resources in the Qinghai-Tibet Plateau and are essential in maintaining the ecological balance of grasslands. Therefore, it is beneficial to obtain Kobresia genome resources and study the adaptive characteristics of Kobresia plants in the Qinghai-Tibetan Plateau. We assembled the genome of Kobresia littledalei C. B. Clarke, which was about 373.85 Mb in size. 96.82% of the bases were attached to 29 pseudo-chromosomes, combining PacBio, Illumina and Hi-C sequencing data. Additional investigation of the annotation identified 23,136 protein-coding genes. 98.95% of these were functionally annotated. According to phylogenetic analysis, K. littledalei in Cyperaceae separated from Poaceae about 97.6 million years ago after separating from Ananas comosus in Bromeliaceae about 114.3mya. For K. littledalei, we identified a high-quality genome at the chromosome level. This is the first time a reference genome has been established for a species of Cyperaceae. This genome will help additional studies focusing on the processes of plant adaptation to environments with high altitude and cold weather.


Subject(s)
Cyperaceae/classification , Genome, Plant , Phylogeny , Chromosomes, Plant , Tibet
SELECTION OF CITATIONS
SEARCH DETAIL
...