Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 194(Pt A): 115281, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37454472

ABSTRACT

Microplastics (MPs) are an emerging pollutant that can be detected in all ecosystems, especially aquatic ecosystems. Wastewater treatment plants (WWTPs) are important point sources of MP release into the sea. In this study, the characteristics of MPs in wastewater and sludge samples taken from different units of WWTP in Bursa-Gemlik district for 12 months were investigated. Wastewater and sludge samples collected from 7 different points were classified as size, shape, color, and counted. The amount of MP in the influent and effluent of the WWTP, respectively; 107.1 ± 40.2 MP/L and 4.1 ± 1.1 MP/L. Although the MP removal efficiency of the WWTP is 96.17 %, approximately 74,825,000 MP is discharged into the Marmara Sea every day. The amount of MP in the sludge is 14.3 ± 7.1 MP/g. The amount of MP accumulated in 22tons of waste sludge formed daily in WWTP was calculated as 314,600,000 MP, and the annual accumulated amount was calculated as approximately 1.15 × 1011 MP. The MPs in the WWTP were mainly 1-0.5 mm in size. Fibers were the dominant MP shape in both the wastewater and sludge samples. Black and transparent were the dominant MP colors. Seven different polymer types of MPs were detected, which were mainly types of polyethylene, polypropylene, and polyethylene terephthalate. Despite the high removal efficiency in the investigated WWTP, it has been shown that it acts as an important source of MPs to the sea ecosystem due to the high discharge rates.


Subject(s)
Microplastics , Water Pollutants, Chemical , Wastewater , Plastics , Sewage , Waste Disposal, Fluid , Ecosystem , Seasons , Water Pollutants, Chemical/analysis , Environmental Monitoring
2.
Environ Pollut ; 310: 119890, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35932899

ABSTRACT

Wastewater treatment plants (WWTPs) are considered one of the important sources of aquatic/terrestrial microplastic (MP) pollution. Therefore, the abundance and properties of MPs in the wastewater and sludge of an urban WWTP in Bursa Turkey were investigated. The amount, properties, and removal of MPs were evaluated. The results showed that the average abundance of MPs was 135.3 ± 28.0 n/L in the influent and 8.5 ± 4.7 n/L in the effluent, with a 93.7% removal rate, MP was removed and transferred to the sludge. The daily MP amount released in the aquatic environment is calculated as 525 million MPs, and the annual amount is 1.9 × 1011 MPs. The abundance of MPs in the sludge thickening and sludge filter cake is 17.9 ± 2.3 and 9.5 ± 2.3 n/g dry weight (dw), respectively. The sludge disposal amount of WWTP is 81.5 tons/day and the approximate amount of MP accumulated in the sludge per year is calculated as 2.8 × 1011 MPs. In wastewater and sludge samples, fragment dominant shape, black main colour, and 500-1000 µm sizes are the most common size. The main MP types in wastewater samples at the influent are polypropylene (PP, 36.8%), polyethylene (PE, 31.0%), polystyrene (PS, 11.8%), polyethylene terephthalate (PET, 8.0%), and polyamide (PA, 7.1%), at the effluent (PE, 33.0%), (PP, 52.5%), and (PS, 8.2%). In the sludge cake, the distribution is (PE, 40.8%), (PP, 27.6%), (PS, 18.7%) and (PET, 8.0%). The results of this study show that MPs are removed from wastewater with high efficiency by treatment processes and a significant amount accumulates in the sludge. Therefore, it is suggested that to integrate advanced treatment processes into urban WWTPs and use effective sludge disposal management practices to reduce the amount of MP released into the environment with effluent and sludge.


Subject(s)
Water Pollutants, Chemical , Water Purification , Environmental Monitoring , Microplastics , Plastics , Sewage , Turkey , Waste Disposal, Fluid , Wastewater
3.
Proteome Sci ; 12: 25, 2014.
Article in English | MEDLINE | ID: mdl-25071420

ABSTRACT

The myotendinous junction is a specialized structure of the muscle fibre enriched in mechanosensing complexes, including costameric proteins and core elements of the z-disc. Here, laser capture microdissection was applied to purify membrane regions from the myotendinous junctions of mouse skeletal muscles, which were then processed for proteomic analysis. Sarcolemma sections from the longitudinal axis of the muscle fibre were used as control for the specificity of the junctional preparation. Gene ontology term analysis of the combined lists indicated a statistically significant enrichment in membrane-associated proteins. The myotendinous junction preparation contained previously uncharacterized proteins, a number of z-disc costameric ligands (e.g., actinins, capZ, αB cristallin, filamin C, cypher, calsarcin, desmin, FHL1, telethonin, nebulin, titin and an enigma-like protein) and other proposed players of sarcomeric stretch sensing and signalling, such as myotilin and the three myomesin homologs. A subset were confirmed by immunofluorescence analysis as enriched at the myotendinous junction, suggesting that laser capture microdissection from muscle sections is a valid approach to identify novel myotendinous junction players potentially involved in mechanotransduction pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...