Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Health Geogr ; 17(1): 5, 2018 02 17.
Article in English | MEDLINE | ID: mdl-29454357

ABSTRACT

BACKGROUND: The spatial scan statistic is widely used by public health professionals in the detection of spatial clusters in inhomogeneous point process. The most popular version of the spatial scan statistic uses a circular-shaped scanning window. Several other variants, using other parametric or non-parametric shapes, are also available. However, none of them offer information about the uncertainty on the borders of the detected clusters. METHOD: We propose a new method to evaluate uncertainty on the boundaries of spatial clusters identified through the spatial scan statistic for Poisson data. For each spatial data location i, a function F(i) is calculated. While not a probability, this function takes values in the [0, 1] interval, with a higher value indicating more evidence that the location belongs to the true cluster. RESULTS: Through a set of simulation studies, we show that the F function provides a way to define, measure and visualize the certainty or uncertainty of each specific location belonging to the true cluster. The method can be applied whether there are one or multiple detected clusters on the map. We illustrate the new method on a data set concerning Chagas disease in Minas Gerais, Brazil. CONCLUSIONS: The higher the intensity given to an area, the higher the plausibility of that particular area to belong to the true cluster in case it exists. This way, the F function provides information from which the public health practitioner can perform a border analysis of the detected spatial scan statistic clusters. We have implemented and illustrated the border analysis F function in the context of the circular spatial scan statistic for spatially aggregated Poisson data. The definition is clearly independent of both the shape of the scanning window and the probability model under which the data is generated. To make the new method widely available to users, it has been implemented in the freely available SaTScan[Formula: see text] software www.satscan.org .


Subject(s)
Chagas Disease/epidemiology , Disease Outbreaks , Geographic Mapping , Models, Statistical , Brazil/epidemiology , Chagas Disease/diagnosis , Cluster Analysis , Disease Outbreaks/statistics & numerical data , Humans , Poisson Distribution
2.
Int J Health Geogr ; 10: 1, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21214924

ABSTRACT

BACKGROUND: There is considerable uncertainty in the disease rate estimation for aggregated area maps, especially for small population areas. As a consequence the delineation of local clustering is subject to substantial variation. Consider the most likely disease cluster produced by any given method, like SaTScan, for the detection and inference of spatial clusters in a map divided into areas; if this cluster is found to be statistically significant, what could be said of the external areas adjacent to the cluster? Do we have enough information to exclude them from a health program of prevention? Do all the areas inside the cluster have the same importance from a practitioner perspective? RESULTS: We propose a method to measure the plausibility of each area being part of a possible localized anomaly in the map. In this work we assess the problem of finding error bounds for the delineation of spatial clusters in maps of areas with known populations and observed number of cases. A given map with the vector of real data (the number of observed cases for each area) shall be considered as just one of the possible realizations of the random variable vector with an unknown expected number of cases. The method is tested in numerical simulations and applied for three different real data maps for sharply and diffusely delineated clusters. The intensity bounds found by the method reflect the degree of geographic focus of the detected clusters. CONCLUSIONS: Our technique is able to delineate irregularly shaped and multiple clusters, making use of simple tools like the circular scan. Intensity bounds for the delineation of spatial clusters are obtained and indicate the plausibility of each area belonging to the real cluster. This tool employs simple mathematical concepts and interpreting the intensity function is very intuitive in terms of the importance of each area in delineating the possible anomalies of the map of rates. The Monte Carlo simulation requires an effort similar to the circular scan algorithm, and therefore it is quite fast. We hope that this tool should be useful in public health decision making of which areas should be prioritized.


Subject(s)
Data Interpretation, Statistical , Epidemiologic Methods , Population Surveillance/methods , Small-Area Analysis , Space-Time Clustering , Statistics, Nonparametric , Bayes Theorem , Brazil/epidemiology , Breast Neoplasms/epidemiology , Chagas Disease/epidemiology , Female , Geography , Homicide/statistics & numerical data , Humans , Likelihood Functions , Monte Carlo Method , Risk , United States/epidemiology
3.
Int J Health Geogr ; 9: 55, 2010 Oct 29.
Article in English | MEDLINE | ID: mdl-21034451

ABSTRACT

BACKGROUND: Irregularly shaped spatial clusters are difficult to delineate. A cluster found by an algorithm often spreads through large portions of the map, impacting its geographical meaning. Penalized likelihood methods for Kulldorff's spatial scan statistics have been used to control the excessive freedom of the shape of clusters. Penalty functions based on cluster geometry and non-connectivity have been proposed recently. Another approach involves the use of a multi-objective algorithm to maximize two objectives: the spatial scan statistics and the geometric penalty function. RESULTS & DISCUSSION: We present a novel scan statistic algorithm employing a function based on the graph topology to penalize the presence of under-populated disconnection nodes in candidate clusters, the disconnection nodes cohesion function. A disconnection node is defined as a region within a cluster, such that its removal disconnects the cluster. By applying this function, the most geographically meaningful clusters are sifted through the immense set of possible irregularly shaped candidate cluster solutions. To evaluate the statistical significance of solutions for multi-objective scans, a statistical approach based on the concept of attainment function is used. In this paper we compared different penalized likelihoods employing the geometric and non-connectivity regularity functions and the novel disconnection nodes cohesion function. We also build multi-objective scans using those three functions and compare them with the previous penalized likelihood scans. An application is presented using comprehensive state-wide data for Chagas' disease in puerperal women in Minas Gerais state, Brazil. CONCLUSIONS: We show that, compared to the other single-objective algorithms, multi-objective scans present better performance, regarding power, sensitivity and positive predicted value. The multi-objective non-connectivity scan is faster and better suited for the detection of moderately irregularly shaped clusters. The multi-objective cohesion scan is most effective for the detection of highly irregularly shaped clusters.


Subject(s)
Chagas Disease/epidemiology , Cluster Analysis , Population Surveillance/methods , Puerperal Disorders/epidemiology , Algorithms , Animals , Brazil/epidemiology , Chagas Disease/parasitology , Chagas Disease/transmission , Female , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical , Insect Vectors/parasitology , Likelihood Functions , Monte Carlo Method , Puerperal Disorders/parasitology , Triatominae/pathogenicity , Trypanosoma cruzi/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...