Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Inform ; 145: 104475, 2023 09.
Article in English | MEDLINE | ID: mdl-37595770

ABSTRACT

BACKGROUND AND OBJECTIVE: Valvular heart disease (VHD) is associated with elevated mortality rates. Although transthoracic echocardiography (TTE) is the gold standard detection tool, phonocardiography (PCG) could be an alternative as it is a cost-effective and noninvasive method for cardiac auscultation. Many researchers have dedicated their efforts to improving the decision-making process and developing robust and precise approaches to assist physicians in providing reliable diagnoses of VHD. METHODS: This research proposes a novel approach for the detection of anomalous valvular heart sounds from PCG signals. The proposed approach combines orthogonal non-negative matrix factorization (ONMF) and convolutional neural network (CNN) architectures in a three-stage cascade. The aim of the proposal is to improve the learning process by identifying the optimal ONMF temporal or spectral patterns for accurate detection. In the first stage, the time-frequency representation of the input PCG signal is computed. Next, band-pass filtering is performed to locate the spectral range that is most relevant for the presence of such cardiac abnormalities. In the second stage, the temporal and spectral cardiac structures are extracted using the ONMF approach. These structures are utilized in the third stage and fed into the CNN architecture to detect abnormal heart sounds. RESULTS: Several state-of-the-art CNN architectures, such as LeNet5, AlexNet, ResNet50, VGG16 and GoogLeNet, have been evaluated to determine the effectiveness of using ONMF temporal features for VHD detection. The results reveal that the integration of ONMF temporal features with a CNN classifier significantly improve VHD detection. Specifically, the proposed approach achieves an accuracy improvement of approximately 45% when ONMF spectral features are used and 35% when time-frequency features from the short-time Fourier transform (STFT) spectrogram are used. Additionally, feeding ONMF temporal features into low-complexity CNN architectures yields competitive results comparable to those obtained with complex architectures. CONCLUSIONS: The temporal structure factorized by ONMF plays a critical role in distinguishing between normal heart sounds and abnormal heart sounds since the repeatability of normal heart cycles is disrupted by the presence of cardiac abnormalities. Consequently, the results highlight the importance of appropriate input data representation in the learning process of CNN models in the biomedical field of valvular heart sound detection.


Subject(s)
Heart Valve Diseases , Phonocardiography , Humans , Algorithms , Heart Valve Diseases/diagnostic imaging , Neural Networks, Computer , Phonocardiography/methods
2.
Comput Methods Programs Biomed ; 221: 106909, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35649297

ABSTRACT

BACKGROUND AND OBJECTIVE: Auscultation is the first technique applied to the early diagnose of any cardiovascular disease (CVD) in rural areas and poor-resources countries because of its low cost and non-invasiveness. However, it highly depends on the physician's expertise to recognize specific heart sounds heard through the stethoscope. The analysis of phonocardiogram (PCG) signals attempts to segment each cardiac cycle into the four cardiac states (S1, systole, S2 and diastole) in order to develop automatic systems applied to an efficient and reliable detection and classification of heartbeats. In this work, we propose an unsupervised approach, based on time-frequency characteristics shown by cardiac sounds, to detect and classify heartbeats S1 and S2. METHODS: The proposed system consists of a two-stage cascade. The first stage performs a rough heartbeat detection while the second stage refines the previous one, improving the temporal localization and also classifying the heartbeats into types S1 and S2. The first contribution is a novel approach that combines the dissimilarity matrix with the frame-level spectral divergence to locate heartbeats using the repetitiveness shown by the heart sounds and the temporal relationships between the intervals defined by the events S1/S2 and non-S1/S2 (systole and diastole). The second contribution is a verification-correction-classification process based on a sliding window that allows the preservation of the temporal structure of the cardiac cycle in order to be applied in the heart sound classification. The proposed method has been assessed using the open access databases PASCAL, CirCor DigiScope Phonocardiogram and an additional sound mixing procedure considering both Additive White Gaussian Noise (AWGN) and different kinds of clinical ambient noises from a commercial database. RESULTS: The proposed method outperforms the detection and classification performance of other recent state-of-the-art methods. Although our proposal achieves the best average accuracy for PCG signals without cardiac abnormalities, 99.4% in heartbeat detection and 97.2% in heartbeat classification, its worst average accuracy is always above 92% for PCG signals with cardiac abnormalities, signifying an improvement in heartbeat detection/classification above 10% compared to the other state-of-the-art methods evaluated. CONCLUSIONS: The proposed method provides the best detection/classification performance in realistic scenarios where the presence of cardiac anomalies as well as different types of clinical environmental noises are active in the PCG signal. Of note, the promising modelling of the temporal structures of the heart provided by the dissimilarity matrix together with the frame-level spectral divergence, as well as the removal of a significant number of spurious heart events and recovery of missing heart events, both corrected by the proposed verification-correction-classification algorithm, suggest that our proposal is a successful tool to be applied in heart segmentation.


Subject(s)
Heart Sounds , Signal Processing, Computer-Assisted , Algorithms , Heart , Heart Rate , Phonocardiography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...