Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Adv ; 6(22): eaay4945, 2020 May.
Article in English | MEDLINE | ID: mdl-32518819

ABSTRACT

Atmospheric new-particle formation (NPF) affects climate by contributing to a large fraction of the cloud condensation nuclei (CCN). Highly oxygenated organic molecules (HOMs) drive the early particle growth and therefore substantially influence the survival of newly formed particles to CCN. Nitrogen oxide (NOx) is known to suppress the NPF driven by HOMs, but the underlying mechanism remains largely unclear. Here, we examine the response of particle growth to the changes of HOM formation caused by NOx. We show that NOx suppresses particle growth in general, but the suppression is rather nonuniform and size dependent, which can be quantitatively explained by the shifted HOM volatility after adding NOx. By illustrating how NOx affects the early growth of new particles, a critical step of CCN formation, our results help provide a refined assessment of the potential climatic effects caused by the diverse changes of NOx level in forest regions around the globe.

2.
Sci Rep ; 8(1): 1482, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29367716

ABSTRACT

The formation of new atmospheric particles involves an initial step forming stable clusters less than a nanometre in size (<~1 nm), followed by growth into quasi-stable aerosol particles a few nanometres (~1-10 nm) and larger (>~10 nm). Although at times, the same species can be responsible for both processes, it is thought that more generally each step comprises differing chemical contributors. Here, we present a novel analysis of measurements from a unique multi-station ground-based observing system which reveals new insights into continental-scale patterns associated with new particle formation. Statistical cluster analysis of this unique 2-year multi-station dataset comprising size distribution and chemical composition reveals that across Europe, there are different major seasonal trends depending on geographical location, concomitant with diversity in nucleating species while it seems that the growth phase is dominated by organic aerosol formation. The diversity and seasonality of these events requires an advanced observing system to elucidate the key processes and species driving particle formation, along with detecting continental scale changes in aerosol formation into the future.

3.
Faraday Discuss ; 200: 579-598, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28574567

ABSTRACT

Organic compounds in the atmosphere vary widely in their molecular composition and chemical properties, so no single instrument can reasonably measure the entire range of ambient compounds. Over the past decade, a new generation of in situ, field-deployable mass spectrometers has dramatically improved our ability to detect, identify, and quantify these organic compounds, but no systematic approach has been developed to assess the extent to which currently available tools capture the entire space of chemical identity and properties that is expected in the atmosphere. Reduced-parameter frameworks that have been developed to describe atmospheric mixtures are exploited here to characterize the range of chemical properties accessed by a suite of instruments. Multiple chemical spaces (e.g. oxidation state of carbon vs. volatility, and oxygen number vs. carbon number) were populated with ions measured by several mass spectrometers, with gas- and particle-phase α-pinene oxidation products serving as the test mixture of organic compounds. Few gaps are observed in the coverage of the parameter spaces by the instruments employed in this work, though the full extent to which comprehensive measurement was achieved is difficult to assess due to uncertainty in the composition of the mixture. Overlaps between individual ions and regions in parameter space were identified, both between gas- and particle-phase measurements, and within each phase. These overlaps were conservatively found to account for little (<10%) of the measured mass. However, challenges in identifying overlaps and in accurately converting molecular formulas into chemical properties (such as volatility or reactivity) highlight a continued need to incorporate structural information into atmospheric measurements.

4.
Environ Sci Technol ; 46(15): 8025-34, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22788666

ABSTRACT

In June 2010, the NOAA WP-3D aircraft conducted two survey flights around the Deepwater Horizon (DWH) oil spill. The Gulf oil spill resulted in an isolated source of secondary organic aerosol (SOA) precursors in a relatively clean environment. Measurements of aerosol composition and volatile organic species (VOCs) indicated formation of SOA from intermediate-volatility organic compounds (IVOCs) downwind of the oil spill (Science2011, 331, doi 10.1126/science.1200320). In an effort to better understand formation of SOA in this environment, we present mass spectral characteristics of SOA in the Gulf and of SOA formed in the laboratory from evaporated light crude oil. Compared to urban primary organic aerosol, high-mass-resolution analysis of the background-subtracted SOA spectra in the Gulf (for short, "Gulf SOA") showed higher contribution of C(x)H(y)O(+) relative to C(x)H(y)(+) fragments at the same nominal mass. In each transect downwind of the DWH spill site, a gradient in the degree of oxidation of the Gulf SOA was observed: more oxidized SOA (oxygen/carbon = O/C ∼0.4) was observed in the area impacted by fresher oil; less oxidized SOA (O/C ∼0.3), with contribution from fragments with a hydrocarbon backbone, was found in a broader region of more-aged surface oil. Furthermore, in the plumes originating from the more-aged oil, contribution of oxygenated fragments to SOA decreased with downwind distance. Despite differences between experimental conditions in the laboratory and the ambient environment, mass spectra of SOA formed from gas-phase oxidation of crude oil by OH radicals in a smog chamber and a flow tube reactor strongly resembled the mass spectra of Gulf SOA (r(2) > 0.94). Processes that led to the observed Gulf SOA characteristics are also likely to occur in polluted regions where VOCs and IVOCs are coemitted.


Subject(s)
Aerosols , Air Pollutants/analysis , Mass Spectrometry/methods , Petroleum Pollution , Volatile Organic Compounds/analysis , Oxidation-Reduction
5.
Environ Sci Technol ; 45(3): 910-6, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21186814

ABSTRACT

We use results from positive matrix factorization (PMF) analysis of 15 urban aerosol mass spectrometer (AMS) data sets to derive simple methods for estimating major organic aerosol (OA) component concentrations in real time. PMF analysis extracts mass spectral (MS) profiles and mass concentrations for key OA components such as hydrocarbon-like OA (HOA), oxygenated OA (OOA), low-volatility OOA (LV-OOA), semivolatile OOA (SV-OOA), and biomass burning OA (BBOA). The variability in the component MS across all sites is characterized and used to derive standard profiles for real-time estimation of component concentrations. Two methods for obtaining first-order estimates of the HOA and OOA mass concentrations are evaluated. The first approach is the tracer m/z method, in which the HOA and OOA concentrations are estimated from m/z 57 and m/z 44 as follows: HOA ∼ 13.4 × (C(57) - 0.1 × C(44)) and OOA ∼ 6.6 × C(44), where C(i) is the equivalent mass concentration of tracer ion m/z i. The second approach uses a chemical mass balance (CMB) method in which standard HOA and OOA profiles are used as a priori information for calculating their mass concentrations. The HOA and OOA mass concentrations obtained from the first-order estimates are evaluated by comparing with the corresponding PMF results for each site. Both methods reproduce the HOA and OOA concentrations to within ∼30% of the results from detailed PMF analysis at most sites, with the CMB method being slightly better. For hybrid CMB methods, we find that fixing the LV-OOA spectrum and not constraining the other spectra produces the best results.


Subject(s)
Aerosols/chemistry , Air Pollutants/chemistry , Environmental Monitoring/methods , Air Pollution/statistics & numerical data , Cities , Mass Spectrometry , Vehicle Emissions/analysis
6.
Atmos Chem Phys ; 10(2): 5599-5626, 2010.
Article in English | MEDLINE | ID: mdl-22427751

ABSTRACT

Quantification of exposure to traffic-related air pollutants near highways is hampered by incomplete knowledge of the scales of temporal variation of pollutant gradients. The goal of this study was to characterize short-term temporal variation of vehicular pollutant gradients within 200-400 m of a major highway (>150 000 vehicles/d). Monitoring was done near Interstate 93 in Somerville (Massachusetts) from 06:00 to 11:00 on 16 January 2008 using a mobile monitoring platform equipped with instruments that measured ultrafine and fine particles (6-1000 nm, particle number concentration (PNC)); particle-phase (>30 nm) [Formula: see text], [Formula: see text], and organic compounds; volatile organic compounds (VOCs); and CO(2), NO, NO(2), and O(3). We observed rapid changes in pollutant gradients due to variations in highway traffic flow rate, wind speed, and surface boundary layer height. Before sunrise and peak traffic flow rates, downwind concentrations of particles, CO(2), NO, and NO(2) were highest within 100-250 m of the highway. After sunrise pollutant levels declined sharply (e.g., PNC and NO were more than halved) and the gradients became less pronounced as wind speed increased and the surface boundary layer rose allowing mixing with cleaner air aloft. The levels of aromatic VOCs and [Formula: see text], [Formula: see text] and organic aerosols were generally low throughout the morning, and their spatial and temporal variations were less pronounced compared to PNC and NO. O(3) levels increased throughout the morning due to mixing with O(3)-enriched air aloft and were generally lowest near the highway reflecting reaction with NO. There was little if any evolution in the size distribution of 6-225 nm particles with distance from the highway. These results suggest that to improve the accuracy of exposure estimates to near-highway pollutants, short-term (e.g., hourly) temporal variations in pollutant gradients must be measured to reflect changes in traffic patterns and local meteorology.

7.
Science ; 326(5959): 1525-9, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-20007897

ABSTRACT

Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high-time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.

8.
Mass Spectrom Rev ; 26(2): 185-222, 2007.
Article in English | MEDLINE | ID: mdl-17230437

ABSTRACT

The application of mass spectrometric techniques to the real-time measurement and characterization of aerosols represents a significant advance in the field of atmospheric science. This review focuses on the aerosol mass spectrometer (AMS), an instrument designed and developed at Aerodyne Research, Inc. (ARI) that is the most widely used thermal vaporization AMS. The AMS uses aerodynamic lens inlet technology together with thermal vaporization and electron-impact mass spectrometry to measure the real-time non-refractory (NR) chemical speciation and mass loading as a function of particle size of fine aerosol particles with aerodynamic diameters between approximately 50 and 1,000 nm. The original AMS utilizes a quadrupole mass spectrometer (Q) with electron impact (EI) ionization and produces ensemble average data of particle properties. Later versions employ time-of-flight (ToF) mass spectrometers and can produce full mass spectral data for single particles. This manuscript presents a detailed discussion of the strengths and limitations of the AMS measurement approach and reviews how the measurements are used to characterize particle properties. Results from selected laboratory experiments and field measurement campaigns are also presented to highlight the different applications of this instrument. Recent instrumental developments, such as the incorporation of softer ionization techniques (vacuum ultraviolet (VUV) photo-ionization, Li+ ion, and electron attachment) and high-resolution ToF mass spectrometers, that yield more detailed information about the organic aerosol component are also described.

9.
J Mol Spectrosc ; 192(2): 338-347, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9831500

ABSTRACT

The complexes of SO3 with HF, HCl, and HBr have been studied by microwave spectroscopy. In all three systems, the halogen atom approaches the SO3 on or near its C3 axis, and the vibrationally averaged structure is that of a symmetric top. The S-X bond lengths are 2.655(10), 3.1328(57), and 3.2339(85) Å for the HF, HCl, and HBr complexes, respectively, and in all three systems the out-of-plane distortion of the SO3 is negligible. In HF-SO3, the hydrogen points away from the SO3 and hyperfine structure in the DF complex gives an average angle of 47.7 degrees with respect to the vibrationally averaged C3 axis of the complex. In the HCl and HBr complexes, however, the HX unit is nearly parallel to the SO3 plane. In HCl-SO3, the HCl forms a 72.8 degrees angle with the average C3 axis of the complex, with the proton tilting slightly toward the SO3. In HBr-SO3, the average orientation of the HBr is 73.0 degrees off the symmetry axis of the complex, but the direction of the tilt (toward or away from the SO3) is not determined. Although the hydrogen halides react with SO3 in bulk to produce halosulfuric acids, these gas-phase complexes are much like weakly bound dimers. Copyright 1998 Academic Press.

12.
Panminerva Med ; 18(11-12): 492-8, 1976.
Article in English | MEDLINE | ID: mdl-995414
13.
J Cell Physiol ; 85(2 Pt 1): 271-81, 1975 Apr.
Article in English | MEDLINE | ID: mdl-1168202

ABSTRACT

Observations on the pattern of nuclear incorporation of 3H-TdR in long term (8-day) and short term (3-day) 3T3 cultures with local cell densities between 0.2 times 10-4 and 6.2 times 10-4 cells/cm2 are reported. Contrary to a number of previous studies our observations indicate that density dependent inhibition is exhibited in relatively sparse cultures, commencing at 0.5 times 10-4 cells/cm2. Various possible mechanisms which could have caused the observed pattern of density-dependent regression in labelling index are discussed.


Subject(s)
Contact Inhibition , Fibroblasts/physiology , Animals , Autoradiography , Cell Line , Cell Nucleus/metabolism , Mice , Mice, Inbred Strains/embryology , Models, Biological , Regression Analysis , Thymidine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...