Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(1)2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31887992

ABSTRACT

Carbon xerogels with different macropore sizes and degrees of graphitization were evaluated as electrodes in lithium-ion batteries. It was found that pore structure of the xerogels has a marked effect on the degree of graphitization of the final carbons. Moreover, the incorporation of graphene oxide to the polymeric structure of the carbon xerogels also leads to a change in their carbonaceous structure and to a remarkable increase in the graphitic phase of the samples studied. The sample with the highest degree of graphitization (i.e., hybrid graphene-carbon xerogel) displayed the highest capacity and stability over 100 cycles, with values even higher than those of the commercial graphite SLP50 used as reference.

SELECTION OF CITATIONS
SEARCH DETAIL
...