Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38826421

ABSTRACT

Monogenic syndromes are associated with neurodevelopmental changes that result in cognitive impairments, neurobehavioral phenotypes including autism and attention deficit hyperactivity disorder (ADHD), and seizures. Limited studies and resources are available to make meaningful headway into the underlying molecular mechanisms that result in these symptoms. One such example is DeSanto-Shinawi Syndrome (DESSH), a rare disorder caused by pathogenic variants in the WAC gene. Individuals with DESSH syndrome exhibit a recognizable craniofacial gestalt, developmental delay/intellectual disability, neurobehavioral symptoms that include autism, ADHD, behavioral difficulties and seizures. However, no thorough studies from a vertebrate model exist to understand how these changes occur. To overcome this, we developed both murine and zebrafish Wac/wac deletion mutants and studied whether their phenotypes recapitulate those described in individuals with DESSH syndrome. We show that the two Wac models exhibit craniofacial and behavioral changes, reminiscent of abnormalities found in DESSH syndrome. In addition, each model revealed impacts to GABAergic neurons and further studies showed that the mouse mutants are susceptible to seizures, changes in brain volumes that are different between sexes and relevant behaviors. Finally, we uncovered transcriptional impacts of Wac loss of function that will pave the way for future molecular studies into DESSH. These studies begin to uncover some biological underpinnings of DESSH syndrome and elucidate the biology of Wac, with advantages in each model.

2.
Elife ; 102021 10 04.
Article in English | MEDLINE | ID: mdl-34605404

ABSTRACT

Enhancers are cis-regulatory elements that play critical regulatory roles in modulating developmental transcription programs and driving cell-type-specific and context-dependent gene expression in the brain. The development of massively parallel reporter assays (MPRAs) has enabled high-throughput functional screening of candidate DNA sequences for enhancer activity. Tissue-specific screening of in vivo enhancer function at scale has the potential to greatly expand our understanding of the role of non-coding sequences in development, evolution, and disease. Here, we adapted a self-transcribing regulatory element MPRA strategy for delivery to early postnatal mouse brain via recombinant adeno-associated virus (rAAV). We identified and validated putative enhancers capable of driving reporter gene expression in mouse forebrain, including regulatory elements within an intronic CACNA1C linkage disequilibrium block associated with risk in neuropsychiatric disorder genetic studies. Paired screening and single enhancer in vivo functional testing, as we show here, represents a powerful approach towards characterizing regulatory activity of enhancers and understanding how enhancer sequences organize gene expression in the brain.


Subject(s)
Brain/metabolism , Enhancer Elements, Genetic , Animals , Brain/growth & development , High-Throughput Nucleotide Sequencing , Mice
3.
Genome Med ; 13(1): 69, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33910599

ABSTRACT

BACKGROUND: Genes with multiple co-active promoters appear common in brain, yet little is known about functional requirements for these potentially redundant genomic regulatory elements. SCN1A, which encodes the NaV1.1 sodium channel alpha subunit, is one such gene with two co-active promoters. Mutations in SCN1A are associated with epilepsy, including Dravet syndrome (DS). The majority of DS patients harbor coding mutations causing SCN1A haploinsufficiency; however, putative causal non-coding promoter mutations have been identified. METHODS: To determine the functional role of one of these potentially redundant Scn1a promoters, we focused on the non-coding Scn1a 1b regulatory region, previously described as a non-canonical alternative transcriptional start site. We generated a transgenic mouse line with deletion of the extended evolutionarily conserved 1b non-coding interval and characterized changes in gene and protein expression, and assessed seizure activity and alterations in behavior. RESULTS: Mice harboring a deletion of the 1b non-coding interval exhibited surprisingly severe reductions of Scn1a and NaV1.1 expression throughout the brain. This was accompanied by electroencephalographic and thermal-evoked seizures, and behavioral deficits. CONCLUSIONS: This work contributes to functional dissection of the regulatory wiring of a major epilepsy risk gene, SCN1A. We identified the 1b region as a critical disease-relevant regulatory element and provide evidence that non-canonical and seemingly redundant promoters can have essential function.


Subject(s)
Epilepsy/genetics , Gene Expression Regulation , NAV1.1 Voltage-Gated Sodium Channel/genetics , Sequence Deletion/genetics , Animals , Attention , Base Sequence , Brain/metabolism , Brain/pathology , Chromatin/metabolism , Conserved Sequence/genetics , Disease Models, Animal , Electroencephalography , Epilepsy/diagnostic imaging , Evolution, Molecular , Female , HEK293 Cells , Heterozygote , Homozygote , Humans , Male , Maze Learning , Memory Disorders/genetics , Mice, Inbred C57BL , Neurons/metabolism , Open Field Test , Phenotype , Protein Binding , Regulatory Sequences, Nucleic Acid/genetics , Survival Analysis , Temperature , Trans-Activators/metabolism
4.
Elife ; 102021 03 05.
Article in English | MEDLINE | ID: mdl-33666173

ABSTRACT

In utero exposure to maternal immune activation (MIA) is an environmental risk factor for neurodevelopmental and neuropsychiatric disorders. Animal models provide an opportunity to identify mechanisms driving neuropathology associated with MIA. We performed time-course transcriptional profiling of mouse cortical development following induced MIA via poly(I:C) injection at E12.5. MIA-driven transcriptional changes were validated via protein analysis, and parallel perturbations to cortical neuroanatomy were identified via imaging. MIA-induced acute upregulation of genes associated with hypoxia, immune signaling, and angiogenesis, by 6 hr following exposure. This acute response was followed by changes in proliferation, neuronal and glial specification, and cortical lamination that emerged at E14.5 and peaked at E17.5. Decreased numbers of proliferative cells in germinal zones and alterations in neuronal and glial populations were identified in the MIA-exposed cortex. Overall, paired transcriptomic and neuroanatomical characterization revealed a sequence of perturbations to corticogenesis driven by mid-gestational MIA.


Subject(s)
Brain/embryology , Neurogenesis , Prenatal Exposure Delayed Effects/chemically induced , Animals , Brain/metabolism , Disease Models, Animal , Female , Male , Mice, Inbred C57BL , Neurodevelopmental Disorders , Poly I-C/immunology , Pregnancy , Transcriptome
5.
Proc Natl Acad Sci U S A ; 117(37): 23073-23084, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32873638

ABSTRACT

The small GTPase ARL4C participates in the regulation of cell migration, cytoskeletal rearrangements, and vesicular trafficking in epithelial cells. The ARL4C signaling cascade starts by the recruitment of the ARF-GEF cytohesins to the plasma membrane, which, in turn, bind and activate the small GTPase ARF6. However, the role of ARL4C-cytohesin-ARF6 signaling during hippocampal development remains elusive. Here, we report that the E3 ubiquitin ligase Cullin 5/RBX2 (CRL5) controls the stability of ARL4C and its signaling effectors to regulate hippocampal morphogenesis. Both RBX2 knockout and Cullin 5 knockdown cause hippocampal pyramidal neuron mislocalization and development of multiple apical dendrites. We used quantitative mass spectrometry to show that ARL4C, Cytohesin-1/3, and ARF6 accumulate in the RBX2 mutant telencephalon. Furthermore, we show that depletion of ARL4C rescues the phenotypes caused by Cullin 5 knockdown, whereas depletion of CYTH1 or ARF6 exacerbates overmigration. Finally, we show that ARL4C, CYTH1, and ARF6 are necessary for the dendritic outgrowth of pyramidal neurons to the superficial strata of the hippocampus. Overall, we identified CRL5 as a key regulator of hippocampal development and uncovered ARL4C, CYTH1, and ARF6 as CRL5-regulated signaling effectors that control pyramidal neuron migration and dendritogenesis.


Subject(s)
ADP-Ribosylation Factors/metabolism , Cullin Proteins/metabolism , Hippocampus/metabolism , Monomeric GTP-Binding Proteins/metabolism , Morphogenesis/physiology , ADP-Ribosylation Factor 6 , Animals , Cell Membrane/metabolism , Cell Movement/physiology , Dendrites/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Mice , Neurogenesis/physiology , Pyramidal Cells/metabolism , Signal Transduction/physiology , Ubiquitin-Protein Ligases/metabolism
6.
J Vis Exp ; (114)2016 08 04.
Article in English | MEDLINE | ID: mdl-27584943

ABSTRACT

The skin is essential for our survival. The outer epidermal layer consists of the interfollicular epidermis, which is a stratified squamous epithelium covering most of our body, and epidermal appendages such as the hair follicles and sweat glands. The epidermis undergoes regeneration throughout life and in response to injury. This is enabled by K14-expressing basal epidermal stem/progenitor cell populations that are tightly regulated by multiple regulatory mechanisms active within the epidermis and between epidermis and dermis. This article describes a simple method to clarify full thickness mouse skin biopsies, and visualize K14 protein expression patterns, Ki67 labeled proliferating cells, Nile Red labeled sebocytes, and DAPI nuclear labeling at single cell resolution in 3D. This method enables accurate assessment and quantification of skin anatomy and pathology, and of abnormal epidermal phenotypes in genetically modified mouse lines. The CUBIC protocol is the best method available to date to investigate molecular and cellular interactions in full thickness skin biopsies at single cell resolution.


Subject(s)
Microscopy, Confocal/methods , Single-Cell Analysis/methods , Skin/cytology , Skin/metabolism , Animals , Biopsy/methods , Hair Follicle/cytology , Hair Follicle/diagnostic imaging , Hair Follicle/metabolism , Keratinocytes/cytology , Keratinocytes/metabolism , Mice , Mice, Inbred C57BL , Regeneration/physiology , Sebaceous Glands/cytology , Sebaceous Glands/diagnostic imaging , Sebaceous Glands/metabolism , Skin/diagnostic imaging , Stem Cells/cytology , Stem Cells/metabolism , Tissue Culture Techniques/methods
7.
BMC Genomics ; 17: 450, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27295951

ABSTRACT

BACKGROUND: Williams-Beuren Syndrome (WBS) is a genetic disorder associated with multisystemic abnormalities, including craniofacial dysmorphology and cognitive defects. It is caused by a hemizygous microdeletion involving up to 28 genes in chromosome 7q11.23. Genotype/phenotype analysis of atypical microdeletions implicates two evolutionary-related transcription factors, GTF2I and GTF2IRD1, as prime candidates for the cause of the facial dysmorphology. RESULTS: Using a targeted Gtf2ird1 knockout mouse, we employed massively-parallel sequencing of mRNA (RNA-Seq) to understand changes in the transcriptional landscape associated with inactivation of Gtf2ird1 in lip tissue. We found widespread dysregulation of genes including differential expression of 78 transcription factors or coactivators, several involved in organ development including Hey1, Myf6, Myog, Dlx2, Gli1, Gli2, Lhx2, Pou3f3, Sox2, Foxp3. We also found that the absence of GTF2IRD1 is associated with increased expression of genes involved in cellular proliferation, including growth factors consistent with the observed phenotype of extreme thickening of the epidermis. At the same time, there was a decrease in the expression of genes involved in other signalling mechanisms, including the Wnt pathway, indicating dysregulation in the complex networks necessary for epidermal differentiation and facial skin patterning. Several of the differentially expressed genes have known roles in both tissue development and neurological function, such as the transcription factor Lhx2 which regulates several genes involved in both skin and brain development. CONCLUSIONS: Gtf2ird1 inactivation results in widespread gene dysregulation, some of which may be due to the secondary consequences of gene regulatory network disruptions involving several transcription factors and signalling molecules. Genes involved in growth factor signalling and cell cycle progression were identified as particularly important for explaining the skin dysmorphology observed in this mouse model. We have noted that a number of the dysregulated genes have known roles in brain development as well as epidermal differentiation and maintenance. Therefore, this study provides clues as to the underlying mechanisms that may be involved in the broader profile of WBS.


Subject(s)
Epidermis/metabolism , Genetic Association Studies , Muscle Proteins/genetics , Nuclear Proteins/genetics , Trans-Activators/genetics , Williams Syndrome/genetics , Animals , Cluster Analysis , Computational Biology/methods , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , High-Throughput Nucleotide Sequencing , Mice , Mice, Knockout , Models, Biological , Muscle Proteins/deficiency , Muscle Proteins/metabolism , Nuclear Proteins/deficiency , Nuclear Proteins/metabolism , Phenotype , Reproducibility of Results , Signal Transduction , Trans-Activators/deficiency , Trans-Activators/metabolism , Williams Syndrome/diagnosis , Williams Syndrome/metabolism
8.
Hum Genet ; 134(10): 1099-115, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26275350

ABSTRACT

GTF2IRD1 is one of the three members of the GTF2I gene family, clustered on chromosome 7 within a 1.8 Mb region that is prone to duplications and deletions in humans. Hemizygous deletions cause Williams-Beuren syndrome (WBS) and duplications cause WBS duplication syndrome. These copy number variations disturb a variety of developmental systems and neurological functions. Human mapping data and analyses of knockout mice show that GTF2IRD1 and GTF2I underpin the craniofacial abnormalities, mental retardation, visuospatial deficits and hypersociability of WBS. However, the cellular role of the GTF2IRD1 protein is poorly understood due to its very low abundance and a paucity of reagents. Here, for the first time, we show that endogenous GTF2IRD1 has a punctate pattern in the nuclei of cultured human cell lines and neurons. To probe the functional relationships of GTF2IRD1 in an unbiased manner, yeast two-hybrid libraries were screened, isolating 38 novel interaction partners, which were validated in mammalian cell lines. These relationships illustrate GTF2IRD1 function, as the isolated partners are mostly involved in chromatin modification and transcriptional regulation, whilst others indicate an unexpected role in connection with the primary cilium. Mapping of the sites of protein interaction also indicates key features regarding the evolution of the GTF2IRD1 protein. These data provide a visual and molecular basis for GTF2IRD1 nuclear function that will lead to an understanding of its role in brain, behaviour and human disease.


Subject(s)
Cell Nucleus/metabolism , Chromatin/metabolism , Muscle Proteins/metabolism , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Chromatin Assembly and Disassembly , Cilia/metabolism , DNA-Binding Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Muscle Proteins/chemistry , Nuclear Proteins/chemistry , Protein Interaction Domains and Motifs , Protein Transport , Trans-Activators/chemistry , Two-Hybrid System Techniques
9.
Br J Med Med Res ; 5(10): 1198-2012, 2015.
Article in English | MEDLINE | ID: mdl-34012910

ABSTRACT

RATIONALE: Mutations in Transient Receptor Potential Channel 6 (TRPC6) gene are associated with autosomal dominant focal and segmental glomerulosclerosis (FSGS). The majority of the identified mutations affect the ion channel function. Since calcium channels are promising candidate drug targets, there is an an urgent need for a mouse model to assess new therapeutic drugs and to help delineate the pathogenic process leading to FSGS. We have previously reported the generation of three independent transgenic mouse lines carrying different Trpc6 mutations that display a glomerular disease comparable to the phenotype presented by individuals with FSGS. However, the utility of these models for drug testing is dampened by the late-onset of the presentation and the mild phenotypic manifestations. METHODOLOGY: In order to obtain a time-effective mouse model for Trpc6-associated FSGS we generated a new transgenic mutant Trpc6 mouse model emulating the amino acid change carried by the first pediatric patient of FSGS associated with a TRPC6 mutation: M132T. RESULTS: Mice carrying the orthologous Trpc6 M131T transgene showed early onset proteinuria and early signs of FSGS. When exploring molecular consequences of the overexpression of this mutated form of Trpc6 in podocytes, differences in expression levels of Axin2 and ß-catenin were found in glomeruli from transgenic Trpc6 M131T mice. These data supports the proposed molecular mechanisms related to the activation of calcineurin-NFAT/Wnt signaling, as outcome of the increased calcium influx caused by the mutated form of Trpc6. CONCLUSION: Given that the Trpc6 M131T mouse develops an early onset of FSGS-like phenotypes it represents a promising model for studying the pathogenesis of FSGS caused by TRpC6, facilitating the assessment of new drugs as treatments and allowing further studies to understand underlying molecular pathways involved in the development of the TRPC6 mediated disease.

10.
Eur J Hum Genet ; 23(6): 774-80, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25248400

ABSTRACT

Williams-Beuren Syndrome (WBS) is a rare genetic condition caused by a hemizygous deletion involving up to 28 genes within chromosome 7q11.23. Among the spectrum of physical and neurological defects in WBS, it is common to find a distinctive response to sound stimuli that includes extreme adverse reactions to loud, or sudden sounds and a fascination with certain sounds that may manifest as strengths in musical ability. However, hearing tests indicate that sensorineural hearing loss (SNHL) is frequently found in WBS patients. The functional and genetic basis of this unusual auditory phenotype is currently unknown. Here, we investigated the potential involvement of GTF2IRD1, a transcription factor encoded by a gene located within the WBS deletion that has been implicated as a contributor to the WBS assorted neurocognitive profile and craniofacial abnormalities. Using Gtf2ird1 knockout mice, we have analysed the expression of the gene in the inner ear and examined hearing capacity by evaluating the auditory brainstem response (ABR) and the distortion product of otoacoustic emissions (DPOAE). Our results show that Gtf2ird1 is expressed in a number of cell types within the cochlea, and Gtf2ird1 null mice showed higher auditory thresholds (hypoacusis) in both ABR and DPOAE hearing assessments. These data indicate that the principal hearing deficit in the mice can be traced to impairments in the amplification process mediated by the outer hair cells and suggests that similar mechanisms may underpin the SNHL experienced by WBS patients.


Subject(s)
Auditory Threshold , Muscle Proteins/genetics , Nuclear Proteins/genetics , Trans-Activators/genetics , Williams Syndrome/genetics , Animals , Cochlea/cytology , Cochlea/metabolism , Cochlea/physiology , Evoked Potentials, Auditory, Brain Stem , Mice , Mice, Inbred C57BL , Muscle Proteins/metabolism , Nuclear Proteins/metabolism , Otoacoustic Emissions, Spontaneous , Trans-Activators/metabolism , Williams Syndrome/physiopathology
11.
PLoS One ; 7(9): e45155, 2012.
Article in English | MEDLINE | ID: mdl-23028815

ABSTRACT

Smith-Magenis Syndrome (SMS) is a complex genomic disorder mostly caused by the haploinsufficiency of the Retinoic Acid Induced 1 gene (RAI1), located in the chromosomal region 17p11.2. In a subset of SMS patients, heterozygous mutations in RAI1 are found. Here we investigate the molecular properties of these mutated forms and their relationship with the resulting phenotype. We compared the clinical phenotype of SMS patients carrying a mutation in RAI1 coding region either in the N-terminal or the C-terminal half of the protein and no significant differences were found. In order to study the molecular mechanism related to these two groups of RAI1 mutations first we analyzed those mutations that result in the truncated protein corresponding to the N-terminal half of RAI1 finding that they have cytoplasmic localization (in contrast to full length RAI1) and no ability to activate the transcription through an endogenous target: the BDNF enhancer. Similar results were found in lymphoblastoid cells derived from a SMS patient carrying RAI1 c.3103insC, where both mutant and wild type products of RAI1 were detected. The wild type form of RAI1 was found in the chromatin bound and nuclear matrix subcellular fractions while the mutant product was mainly cytoplasmic. In addition, missense mutations at the C-terminal half of RAI1 presented a correct nuclear localization but no activation of the endogenous target. Our results showed for the first time a correlation between RAI1 mutations and abnormal protein function plus they suggest that a reduction of total RAI1 transcription factor activity is at the heart of the SMS clinical presentation.


Subject(s)
Mutation/genetics , Smith-Magenis Syndrome/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Chromatin/metabolism , Enhancer Elements, Genetic/genetics , Genes, Reporter , Humans , Lymphocytes/metabolism , Mice , Mutant Proteins/metabolism , Phenotype , Protein Structure, Tertiary , Protein Transport , Smith-Magenis Syndrome/pathology , Subcellular Fractions/metabolism , Trans-Activators , Transcription Factors/chemistry , Transcription, Genetic , Transcriptional Activation/genetics
12.
Am J Med Genet A ; 158A(7): 1579-88, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22639462

ABSTRACT

Potocki-Lupski syndrome is a genomic disorder caused by duplication of 17p11.2. It is characterized by failure to thrive, intellectual disability, hypotonia, and behavioral difficulties. Structural renal anomalies have been observed in <10% of affected individuals. We present detailed clinical and molecular data on six patients with Potocki-Lupski syndrome, two of whom had renal abnormalities, and investigate the prevalence of kidney abnormalities in the mouse model for the syndrome. In contrast to affected humans, the mouse model does not demonstrate a renal phenotype. Comparison of the duplicated segment in patients with Potocki-Lupski syndrome and the renal phenotype and the syntenic duplicated region in the mouse model allowed us to suggest a 0.285 Mb critical region, including the FLCN gene that may be important for development of renal abnormalities in patients with this duplication.


Subject(s)
Kidney/abnormalities , Smith-Magenis Syndrome/genetics , Abnormalities, Multiple , Adolescent , Animals , Child , Child, Preschool , Chromosome Banding , Chromosome Disorders , Chromosome Duplication , Chromosome Mapping , Chromosomes, Human, Pair 17 , Disease Models, Animal , Female , Gene Duplication , Humans , Infant , Kidney/pathology , Male , Mice , Phenotype , Smith-Magenis Syndrome/complications , Urinary Tract/abnormalities
13.
EMBO Mol Med ; 3(1): 1-4, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21204264

ABSTRACT

Copy number variations (CNV) within the genome are extremely abundant. In this closeup, Canales and Walz discuss how CNV are associated with normal variation, genomic disorders, genome evolution, adaptive traits and how the use of a novel screen described by Ermakova et al in this issue that is designed to identify human diseaserelevant phenotypes associated with CNV in the mouse can help elucidating susceptibility or predisposition to diseases loci.


Subject(s)
Gene Dosage , Genetic Predisposition to Disease , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genome, Human , Genotype , Humans , Mice , Myelin Proteins/genetics , Myelin Proteins/metabolism , Phenotype , Proteins/genetics , Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
14.
PLoS One ; 5(9): e12859, 2010 Sep 20.
Article in English | MEDLINE | ID: mdl-20877463

ABSTRACT

Mutations in the TRPC6 calcium channel (Transient receptor potential channel 6) gene have been associated with familiar forms of Focal and Segmental Glomerulosclerosis (FSGS) affecting children and adults. In addition, acquired glomerular diseases are associated with increased expression levels of TRPC6. However, the exact role of TRPC6 in the pathogenesis of FSGS remains to be elucidated. In this work we describe the generation and phenotypic characterization of three different transgenic mouse lines with podocyte-specific overexpression of the wild type or any of two mutant forms of Trpc6 (P111Q and E896K) previously related to FSGS. Consistent with the human phenotype a non-nephrotic range of albuminuria was detectable in almost all transgenic lines. The histological analysis demonstrated that the transgenic mice developed a kidney disease similar to human FSGS. Differences of 2-3 folds in the presence of glomerular lesions were found between the non transgenic and transgenic mice expressing Trpc6 in its wild type or mutant forms specifically in podocytes. Electron microscopy of glomerulus from transgenic mice showed extensive podocyte foot process effacement. We conclude that overexpression of Trpc6 (wild type or mutated) in podocytes is sufficient to cause a kidney disease consistent with FSGS. Our results contribute to reinforce the central role of podocytes in the etiology of FSGS. These mice constitute an important new model in which to study future therapies and outcomes of this complex disease.


Subject(s)
Gene Expression , Glomerulosclerosis, Focal Segmental/metabolism , Podocytes/metabolism , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Animals , Cell Line , Disease Models, Animal , Female , Glomerulosclerosis, Focal Segmental/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Mutation , Organ Specificity , TRPC6 Cation Channel
15.
BMC Mol Biol ; 11: 63, 2010 Aug 25.
Article in English | MEDLINE | ID: mdl-20738874

ABSTRACT

BACKGROUND: Smith-Magenis Syndrome is a contiguous gene syndrome in which the dosage sensitive gene has been identified: the Retinoic Acid Induced 1 (RAI1). Little is known about the function of human RAI1. RESULTS: We generated the full-length cDNA of the wild type protein and five mutated forms: RAI1-HA 2687delC, RAI1-HA 3103delC, RAI1 R960X, RAI1-HA Q1562R, and RAI1-HA S1808N. Four of them have been previously associated with SMS clinical phenotype. Molecular weight, subcellular localization and transcription factor activity of the wild type and mutant forms were studied by western blot, immunofluorescence and luciferase assays respectively. The wild type protein and the two missense mutations presented a higher molecular weight than expected, localized to the nucleus and activated transcription of a reporter gene. The frameshift mutations generated a truncated polypeptide with transcription factor activity but abnormal subcellular localization, and the same was true for the 1-960aa N-terminal half of RAI1. Two different C-terminal halves of the RAI1 protein (1038aa-end and 1229aa-end) were able to localize into the nucleus but had no transactivation activity. CONCLUSION: Our results indicate that transcription factor activity and subcellular localization signals reside in two separate domains of the protein and both are essential for the correct functionality of RAI1. The pathogenic outcome of some of the mutated forms can be explained by the dissociation of these two domains.


Subject(s)
Mutation , Smith-Magenis Syndrome/genetics , Transcription Factors/genetics , Animals , Cell Line , Chromosome Mapping , DNA Mutational Analysis , Gene Dosage , Genes, Reporter , Humans , Mice , Molecular Sequence Data , Smith-Magenis Syndrome/physiopathology , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/metabolism
16.
Hum Mol Genet ; 17(16): 2486-95, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18469339

ABSTRACT

The Potocki-Lupski syndrome (PTLS) is associated with a microduplication of 17p11.2. Clinical features include multiple congenital and neurobehavioral abnormalities and autistic features. We have generated a PTLS mouse model, Dp(11)17/+, that recapitulates some of the physical and neurobehavioral phenotypes present in patients. Here, we investigated the social behavior and gene expression pattern of this mouse model in a pure C57BL/6-Tyr(c-Brd) genetic background. Dp(11)17/+ male mice displayed normal home-cage behavior but increased anxiety and increased dominant behavior in specific tests. A subtle impairment in the preference for a social target versus an inanimate target and abnormal preference for social novelty (the preference to explore an unfamiliar mouse versus a familiar one) was also observed. Our results indicate that these animals could provide a valuable model to identify the specific gene(s) that confer abnormal social behaviors and that map within this delimited genomic deletion interval. In a first attempt to identify candidate genes and for elucidating the mechanisms of regulation of these important phenotypes, we directly assessed the relative transcription of genes within and around this genomic interval. In this mouse model, we found that candidates genes include not only most of the duplicated genes, but also normal-copy genes that flank the engineered interval; both categories of genes showed altered expression levels in the hippocampus of Dp(11)17/+ mice.


Subject(s)
Autistic Disorder/physiopathology , Disease Models, Animal , Gene Expression , Animals , Autistic Disorder/genetics , Behavior, Animal , Brain/growth & development , Female , Gene Expression Profiling , Humans , Male , Mice , Mice, Inbred C57BL , Organ Size , Phenotype , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...