Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Neurol ; 526(4): 721-741, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29205371

ABSTRACT

The mammalian ventricular-subventricular zone (V-SVZ) presents the highest neurogenic potential in the brain of the adult individual. In rodents, it is mainly composed of chains of neuroblasts. In humans, it is organized in layers where neuroblasts do not form chains. The aim of this study is to describe the cytoarchitecture of canine V-SVZ (cV-SVZ), to assess its neurogenic potential, and to compare our results with those previously described in other species. We have studied by histology, immunohistochemistry (IHC), electron microscopy and neurosphere assay the morphology, cytoarchitecture and neurogenic potential of cV-SVZ. Age groups of animals were performed. Histological and ultrastructural studies indicated that the cV-SVZ is organized in layers as in humans, but including migratory chains as in rodents. Neural progenitors were organized in niches in the subependymal area and a decline in their number was observed with age. Adult-young dogs contained migratory cells capable to expand and differentiate in vitro according with previous results obtained in rodents, primates, humans, pigs, and dogs. Some adult animals presented perivascular niches outside the V-SVZ. Our observations evidence a great similarity between canine and human V-SVZ indicating that the dog may be better representative of neurogenic events in humans, compared with rodents. Accordingly with our results, we conclude that dogs are a valuable animal model of adult neurogenesis in comparative and preclinical studies.


Subject(s)
Brain/cytology , Brain/metabolism , Dogs/anatomy & histology , Dogs/metabolism , Stem Cell Niche , Animals , Brain/growth & development , Brain/ultrastructure , Cells, Cultured , Dogs/growth & development , Female , Immunohistochemistry , Male , Microscopy, Electron , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/ultrastructure , Species Specificity
2.
Stem Cells ; 35(7): 1687-1703, 2017 07.
Article in English | MEDLINE | ID: mdl-28472853

ABSTRACT

Coenzyme Q10 (CoQ10 ) plays a crucial role in mitochondria as an electron carrier within the mitochondrial respiratory chain (MRC) and is an essential antioxidant. Mutations in genes responsible for CoQ10 biosynthesis (COQ genes) cause primary CoQ10 deficiency, a rare and heterogeneous mitochondrial disorder with no clear genotype-phenotype association, mainly affecting tissues with high-energy demand including brain and skeletal muscle (SkM). Here, we report a four-year-old girl diagnosed with minor mental retardation and lethal rhabdomyolysis harboring a heterozygous mutation (c.483G > C (E161D)) in COQ4. The patient's fibroblasts showed a decrease in [CoQ10 ], CoQ10 biosynthesis, MRC activity affecting complexes I/II + III, and respiration defects. Bona fide induced pluripotent stem cell (iPSCs) lines carrying the COQ4 mutation (CQ4-iPSCs) were generated, characterized and genetically edited using the CRISPR-Cas9 system (CQ4ed -iPSCs). Extensive differentiation and metabolic assays of control-iPSCs, CQ4-iPSCs and CQ4ed -iPSCs demonstrated a genotype association, reproducing the disease phenotype. The COQ4 mutation in iPSC was associated with CoQ10 deficiency, metabolic dysfunction, and respiration defects. iPSC differentiation into SkM was compromised, and the resulting SkM also displayed respiration defects. Remarkably, iPSC differentiation in dopaminergic or motor neurons was unaffected. This study offers an unprecedented iPSC model recapitulating CoQ10 deficiency-associated functional and metabolic phenotypes caused by COQ4 mutation. Stem Cells 2017;35:1687-1703.


Subject(s)
Ataxia/genetics , Intellectual Disability/genetics , Mitochondria/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Muscle Weakness/genetics , Rhabdomyolysis/genetics , Ubiquinone/analogs & derivatives , Ubiquinone/deficiency , Ataxia/enzymology , Ataxia/pathology , CRISPR-Cas Systems , Cell Differentiation , Child, Preschool , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Fatal Outcome , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Editing/methods , Gene Expression , Genes, Lethal , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Intellectual Disability/enzymology , Intellectual Disability/pathology , Mitochondria/enzymology , Mitochondria/pathology , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/pathology , Mitochondrial Proteins/deficiency , Motor Neurons/cytology , Motor Neurons/metabolism , Muscle Weakness/enzymology , Muscle Weakness/pathology , Primary Cell Culture , Rhabdomyolysis/enzymology , Rhabdomyolysis/pathology , Ubiquinone/genetics
3.
Hum Mol Genet ; 26(16): 3144-3160, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28541476

ABSTRACT

Huntington's disease (HD) is a fatal neurodegenerative disease with motor, cognitive and psychiatric impairment. Dysfunctions in HD models have been related to reduced levels of striatal brain-derived neurotrophic factor (BDNF) and imbalance between its receptors TrkB and p75(NTR). Thus, molecules with activity on the BDNF/TrkB/p75 system can have therapeutic potential. 7,8-Dihydroxyflavone (7,8-DHF) was described as a TrkB agonist in several models of neuro-degenerative diseases, however, its TrkB activation profile needs further investigation due to its pleiotropic properties and divergence from BDNF effect. To investigate this, we used in vitro and in vivo models of HD to dissect TrkB activation upon 7,8-DHF treatment. 7,8-DHF treatment in primary cultures showed phosphorylation of TrkBY816 but not TrkBY515 with activation of the PLCγ1 pathway leading to morphological and functional improvements. Chronic administration of 7,8-DHF delayed motor deficits in R6/1 mice and reversed deficits on the Novel Object Recognition Test (NORT) at 17 weeks. Morphological and biochemical analyses revealed improved striatal levels of enkephalin, and prevention of striatal volume loss. We found a TrkBY816 but not TrkBY515 phosphorylation recovery in striatum concordant with in vitro results. Additionally, 7,8-DHF normalized striatal levels of induced and neuronal nitric oxide synthase (iNOS and nNOS, respectively) and ameliorated the imbalance of p75/TrkB. Our results provide new insights into the mechanism of action of 7,8-DHF suggesting that its effect through the TrkB receptor in striatum is via selective phosphorylation of its Y816 residue and activation of PLCγ1 pathway, but pleiotropic effects of the drug also contribute to its therapeutic potential.


Subject(s)
Flavones/metabolism , Flavones/therapeutic use , Huntington Disease/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cognition/drug effects , Corpus Striatum/metabolism , Disease Models, Animal , Flavones/pharmacology , Hippocampus/metabolism , Huntington Disease/drug therapy , Mice , Mice, Transgenic , Motor Neurons/drug effects , Phospholipase C gamma/drug effects , Phospholipase C gamma/metabolism , Phosphorylation , Receptor, trkB/metabolism , Signal Transduction/drug effects
4.
Stem Cell Reports ; 3(6): 1118-31, 2014 Dec 09.
Article in English | MEDLINE | ID: mdl-25458894

ABSTRACT

Neurons obtained directly from human somatic cells hold great promise for disease modeling and drug screening. Available protocols rely on overexpression of transcription factors using integrative vectors and are often slow, complex, and inefficient. We report a fast and efficient approach for generating induced neural cells (iNCs) directly from human hematopoietic cells using Sendai virus. Upon SOX2 and c-MYC expression, CD133-positive cord blood cells rapidly adopt a neuroepithelial morphology and exhibit high expansion capacity. Under defined neurogenic culture conditions, they express mature neuronal markers and fire spontaneous action potentials that can be modulated with neurotransmitters. SOX2 and c-MYC are also sufficient to convert peripheral blood mononuclear cells into iNCs. However, the conversion process is less efficient and resulting iNCs have limited expansion capacity and electrophysiological activity upon differentiation. Our study demonstrates rapid and efficient generation of iNCs from hematopoietic cells while underscoring the impact of target cells on conversion efficiency.


Subject(s)
Cell Transdifferentiation , Leukocytes, Mononuclear/cytology , Neurons/cytology , AC133 Antigen , Antigens, CD/metabolism , Cell Proliferation , Cells, Cultured , Cellular Senescence/genetics , Fetal Blood/cytology , Gene Expression , Gene Expression Profiling , Glycoproteins/metabolism , Humans , Immunophenotyping , Leukocytes, Mononuclear/metabolism , Membrane Potentials , Neurons/metabolism , Peptides/metabolism , Phenotype
5.
Front Behav Neurosci ; 3: 60, 2010.
Article in English | MEDLINE | ID: mdl-20204153

ABSTRACT

Panic disorder is a highly prevalent neuropsychiatric disorder that shows co-occurrence with substance abuse. Here, we demonstrate that TrkC, the high-affinity receptor for neurotrophin-3, is a key molecule involved in panic disorder and opiate dependence, using a transgenic mouse model (TgNTRK3). Constitutive TrkC overexpression in TgNTRK3 mice dramatically alters spontaneous firing rates of locus coeruleus (LC) neurons and the response of the noradrenergic system to chronic opiate exposure, possibly related to the altered regulation of neurotrophic peptides observed. Notably, TgNTRK3 LC neurons showed an increased firing rate in saline-treated conditions and profound abnormalities in their response to met(5)-enkephalin. Behaviorally, chronic morphine administration induced a significantly increased withdrawal syndrome in TgNTRK3 mice. In conclusion, we show here that the NT-3/TrkC system is an important regulator of neuronal firing in LC and could contribute to the adaptations of the noradrenergic system in response to chronic opiate exposure. Moreover, our results indicate that TrkC is involved in the molecular and cellular changes in noradrenergic neurons underlying both panic attacks and opiate dependence and support a functional endogenous opioid deficit in panic disorder patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...