Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Blood Adv ; 7(20): 6163-6177, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37389831

ABSTRACT

Linking the genetic background of patients with bleeding diathesis and altered platelet function remains challenging. We aimed to assess how a multiparameter microspot-based measurement of thrombus formation under flow can help identify patients with a platelet bleeding disorder. For this purpose, we studied 16 patients presenting with bleeding and/or albinism and suspected platelet dysfunction and 15 relatives. Genotyping of patients revealed a novel biallelic pathogenic variant in RASGRP2 (splice site c.240-1G>A), abrogating CalDAG-GEFI expression, compound heterozygosity (c.537del, c.571A>T) in P2RY12, affecting P2Y12 signaling, and heterozygous variants of unknown significance in the P2RY12 and HPS3 genes. Other patients were confirmed to have Hermansky-Pudlak syndrome type 1 or 3. In 5 patients, no genetic variant was found. Platelet functions were assessed via routine laboratory measurements. Blood samples from all subjects and day controls were screened for blood cell counts and microfluidic outcomes on 6 surfaces (48 parameters) in comparison with those of a reference cohort of healthy subjects. Differential analysis of the microfluidic data showed that the key parameters of thrombus formation were compromised in the 16 index patients. Principal component analysis revealed separate clusters of patients vs heterozygous family members and control subjects. Clusters were further segregated based on inclusion of hematologic values and laboratory measurements. Subject ranking indicated an overall impairment in thrombus formation in patients carrying a (likely) pathogenic variant of the genes but not in asymptomatic relatives. Taken together, our results indicate the advantages of testing for multiparametric thrombus formation in this patient population.

2.
Front Mol Biosci ; 9: 895028, 2022.
Article in English | MEDLINE | ID: mdl-35832733

ABSTRACT

Peritonitis and subsequent sepsis lead to high morbidity and mortality in response to uncontrolled systemic inflammation primarily mediated by macrophages. Nicotinamide adenine dinucleotide (NAD+) is an important regulator of oxidative stress and immunoinflammatory responses. However, the effects of NAD+ replenishment during inflammatory activation are still poorly defined. Hence, we investigated whether the administration of ß-nicotinamide mononucleotide (ß-NMN), a natural biosynthetic precursor of NAD+, could modulate the macrophage phenotype and thereby ameliorate the dysregulated inflammatory response during sepsis. For this purpose, C57BL6 mice were subjected to the cecal ligation and puncture (CLP) model to provoke sepsis or were injected with thioglycolate to induce sterile peritonitis with recruitment and differentiation of macrophages into the inflamed peritoneal cavity. ß-NMN was administered for 4 days after CLP and for 3 days post thioglycolate treatment where peritoneal macrophages were subsequently analyzed. In the CLP model, administration of ß-NMN decreased bacterial load in blood and reduced clinical signs of distress and mortality during sepsis. These results were supported by transcriptomic analysis of hearts and lungs 24 h post CLP-induction, which revealed that ß-NMN downregulated genes controlling the immuno-inflammatory response and upregulated genes involved in bioenergetic metabolism, mitochondria, and autophagy. In the thioglycolate model, a significant increase in the proportion of CD206 macrophages, marker of anti-inflammatory M2 phenotype, was detected on peritoneal exudate macrophages from ß-NMN-administered mice. Transcriptomic signature of these macrophages after bacterial stimulation confirmed that ß-NMN administration limited the pro-inflammatory M1 phenotype and induced the expression of specific markers of M2 type macrophages. Furthermore, our data show that ß-NMN treatment significantly impacts NAD + metabolism. This shift in the macrophage phenotype and metabolism was accompanied by a reduction in phagolysosome acidification and secretion of inflammatory mediators in macrophages from ß-NMN-treated mice suggesting a reduced pro-inflammatory activation. In conclusion, administration of ß-NMN prevented clinical deterioration and improved survival during sepsis. These effects relied on shifts in the metabolism of organs that face up an increased energy requirement caused by bacterial infection and in innate immunity response, including reprogramming of macrophages from a highly inflammatory phenotype to an anti-inflammatory/pro-resolving profile.

3.
Cells ; 12(1)2022 12 27.
Article in English | MEDLINE | ID: mdl-36611902

ABSTRACT

Doxorubicin (Doxo) is a widely used antineoplastic drug with limited clinical application due to its deleterious dose-related side effects. We investigated whether nicotinamide mononucleotide (NMN) could protect against Doxo-induced cardiotoxicity and physical dysfunction in vivo. To assess the short- and long-term toxicity, two Doxo regimens were tested, acute and chronic. In the acute study, C57BL6/J (B6) mice were injected intraperitoneally (i.p.) once with Doxo (20 mg/kg) and NMN (180 mg/kg/day, i.p.) was administered daily for five days before and after the Doxo injection. In the chronic study, B6 mice received a cumulative dose of 20 mg/kg Doxo administered in fractionated doses for five days. NMN (500 mg/kg/day) was supplied in the mice's drinking water beginning five days before the first injection of Doxo and continuing for 60 days after. We found that NMN significantly increased tissue levels of NAD+ and its metabolites and improved survival and bodyweight loss in both experimental models. In addition, NMN protected against Doxo-induced cardiotoxicity and loss of physical function in acute and chronic studies, respectively. In the heart, NMN prevented Doxo-induced transcriptomic changes related to mitochondrial function, apoptosis, oxidative stress, inflammation and p53, and promyelocytic leukemia nuclear body pathways. Overall, our results suggest that NMN could prevent Doxo-induced toxicity in heart and skeletal muscle.


Subject(s)
Cardiotoxicity , Nicotinamide Mononucleotide , Mice , Animals , Cardiotoxicity/prevention & control , Nicotinamide Mononucleotide/pharmacology , Doxorubicin/toxicity , Heart , Apoptosis
4.
J Thromb Haemost ; 19(9): 2287-2301, 2021 09.
Article in English | MEDLINE | ID: mdl-34060193

ABSTRACT

BACKGROUND: GATA1 is an essential transcription factor for both polyploidization and megakaryocyte (MK) differentiation. The polyploidization defect observed in GATA1 variant carriers is not well understood. OBJECTIVE: To extensively phenotype two pedigrees displaying different variants in the GATA1 gene and determine if GATA1 controls MYH10 expression levels, a key modulator of MK polyploidization. METHOD: A total of 146 unrelated propositi with constitutional thrombocytopenia were screened on a multigene panel. We described the genotype-phenotype correlation in GATA1 variant carriers and investigated the effect of these novel variants on MYH10 transcription using luciferase constructs. RESULTS: The clinical profile associated with the p.L268M variant localized in the C terminal zinc finger was unusual in that the patient displayed bleeding and severe platelet aggregation defects without early-onset thrombocytopenia. p.N206I localized in the N terminal zinc finger was associated, on the other hand, with severe thrombocytopenia (15G/L) in early life. High MYH10 levels were evidenced in platelets of GATA1 variant carriers. Analysis of MKs anti-GATA1 chromatin immunoprecipitation-sequencing data revealed two GATA1 binding sites, located in the 3' untranslated region and in intron 8 of the MYH10 gene. Luciferase reporter assays showed their respective role in the regulation of MYH10 gene expression. Both GATA1 variants significantly alter intron 8 driven MYH10 transcription. CONCLUSION: The discovery of an association between MYH10 and GATA1 is a novel one. Overall, this study suggests that impaired MYH10 silencing via an intronic regulatory element is the most likely cause of GATA1-related polyploidization defect.


Subject(s)
GATA1 Transcription Factor , Megakaryocytes , Myosin Heavy Chains/genetics , Nonmuscle Myosin Type IIB/genetics , Thrombocytopenia , Blood Platelets , GATA1 Transcription Factor/genetics , Gene Silencing , Humans , Thrombocytopenia/genetics , Thrombopoiesis/genetics , Transcription Factors
5.
Food Chem Toxicol ; 150: 112060, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33587977

ABSTRACT

ß-nicotinamide mononucleotide (NMN) is a natural molecule intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD+). Preclinical evidences point to the beneficial effect of NMN administration on several age-related conditions. The present work aimed at studying mutagenicity, and genotoxicity, acute oral toxicity and subchronic oral toxicity of a high purity synthetic form of NMN (NMN-C®) following the OECD guidelines. In the experimental conditions tested, NMN-C® was not mutagenic or genotoxic. Acute toxicity assay revealed that at an oral limit dose of 2666 mg/kg, NMN-C® did not lead to any mortality or treatment-related adverse signs. Over a 90-day sub-chronic period of repeated oral administration of NMN-C® at doses of 375, 750 and 1500 mg/kg/d followed by a 28-day treatment-free recovery period, NMN-C® appeared to be safe and did not promote toxic effects as seen from body weight change, food and water consumption, feed conversion efficiency, biochemical and blood parameters as well as organ toxicity and histological examinations of main organs. In conclusion, we provide the first data highlighting the safety of short to intermediate term (sub-chronic) oral administration of NMN and our experimental results allowed to determine a No-Observable Adverse Effect Level (NOAEL) for NMN-C® to be ≥ 1500 mg/kg/d.


Subject(s)
Nicotinamide Mononucleotide/toxicity , Administration, Oral , Animals , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Male , Molecular Structure , Nicotinamide Mononucleotide/administration & dosage , Nicotinamide Mononucleotide/chemistry , Rats , Rats, Sprague-Dawley , Toxicity Tests
6.
Am Heart J ; 225: 19-26, 2020 07.
Article in English | MEDLINE | ID: mdl-32473355

ABSTRACT

Chronic kidney disease (CKD) is associated with an increased risk of acute coronary syndrome (ACS) and cardiovascular death. CKD patients suffering from ACS are exposed to an increased risk of thrombotic recurrences and a higher bleeding rate than patients with normal renal function. However, CKD patients are excluded or underrepresented in clinical trials. Therefore, determining the optimal antiplatelet strategy in this population is of utmost importance. We designed the TicagRelor Or Clopidogrel in severe or terminal chronic kidney patients Undergoing PERcutaneous coronary intervention for acute coronary syndrome (TROUPER) trial: a prospective, controlled, multicenter, randomized trial to investigate the optimal P2Y12 antagonist in CKD patients with ACS. Patients with stage ≥3b CKD are eligible if the diagnosis of ACS is made and invasive strategy scheduled. Patients are randomized 1:1 between a control group with a 600-mg loading dose of clopidogrel followed by a 75-mg/d maintenance dose for 1 year and an experimental group with a 180-mg loading dose of ticagrelor followed by a 90-mg twice daily maintenance dose for the same duration. The primary end point is defined by the rate of major adverse cardiovascular events, including death, myocardial infarction, urgent revascularization, and stroke at 1 year. Safety will be evaluated by the bleeding rate (Bleeding Academic Research Consortium). To demonstrate the superiority of ticagrelor on major adverse cardiovascular events, we calculated that 508 patients are required. The aim of the TROUPER trial is to compare the efficacy of ticagrelor and clopidogrel in stage >3b CKD patients presenting with ACS and scheduled for an invasive strategy. RCT# NCT03357874.


Subject(s)
Acute Coronary Syndrome/therapy , Clopidogrel/therapeutic use , Percutaneous Coronary Intervention , Platelet Aggregation Inhibitors/therapeutic use , Renal Insufficiency, Chronic/complications , Ticagrelor/therapeutic use , Acute Coronary Syndrome/complications , Acute Coronary Syndrome/prevention & control , Adolescent , Adult , Aged , Clopidogrel/adverse effects , Female , Hemorrhage/chemically induced , Humans , Male , Middle Aged , Platelet Aggregation Inhibitors/adverse effects , Secondary Prevention , Thrombosis/prevention & control , Ticagrelor/adverse effects , Young Adult
7.
Int J Mol Sci ; 21(3)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041177

ABSTRACT

RasGRP2 is calcium and diacylglycerol-regulated guanine nucleotide exchange factor I that activates Rap1, which is an essential signaling-knot in "inside-out" αIIbß3 integrin activation in platelets. Inherited platelet function disorder caused by variants of RASGRP2 represents a new congenital bleeding disorder referred to as platelet-type bleeding disorder-18 (BDPLT18). We review here the structure of RasGRP2 and its functions in the pathophysiology of platelets and of the other cellular types that express it. We will also examine the different pathogenic variants reported so far as well as strategies for the diagnosis and management of patients with BDPLT18.


Subject(s)
Blood Platelet Disorders/genetics , Blood Platelets/pathology , Guanine Nucleotide Exchange Factors/genetics , Hemorrhage/genetics , Blood Platelet Disorders/congenital , Child, Preschool , Female , Guanine Nucleotide Exchange Factors/metabolism , Hemorrhage/congenital , Humans , Infant , Male , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Shelterin Complex , Signal Transduction/genetics , Telomere-Binding Proteins/metabolism
8.
J Thromb Haemost ; 18(3): 693-705, 2020 03.
Article in English | MEDLINE | ID: mdl-31758832

ABSTRACT

BACKGROUND: The small GTPase Rap1 and its guanine nucleotide exchange factor, CalDAG-GEFI (CDGI), are critical for platelet function and hemostatic plug formation. CDGI function is regulated by a calcium binding EF hand regulatory domain and an atypical C1 domain with unknown function. OBJECTIVE: Here, we investigated whether the C1 domain controls CDGI subcellular localization, both in vitro and in vivo. METHODS: CDGI interaction with phosphoinositides was studied by lipid co-sedimentation assays and molecular dynamics simulations. Cellular localization of CDGI was studied in heterologous cells by immunofluorescence and subcellular fractionation assays. RESULTS: Lipid co-sedimentation studies demonstrated that the CDGI C1 domain associates with membranes through exclusive recognition of phosphoinositides, phosphatidylinositol (4,5)-biphosphate (PIP2) and phosphatidylinositol (3,4,5)-triphosphate (PIP3). Molecular dynamics simulations identified a phospholipid recognition motif consisting of residues exclusive to the CDGI C1 domain. Mutation of those residues abolished co-sedimentation of the C1 domain with lipid vesicles and impaired membrane localization of CDGI in heterologous cells. CONCLUSION: Our studies identify a novel interaction between an atypical C1 domain and phosphatidylinositol (4,5)-biphosphate and phosphatidylinositol (3,4,5)-triphosphate in cellular membranes, which is critical for Rap1 signaling in health and disease.


Subject(s)
GTP Phosphohydrolase Activators , Phosphatidylinositols , GTP Phosphohydrolases , Guanine Nucleotide Exchange Factors , Signal Transduction
9.
Res Pract Thromb Haemost ; 3(4): 684-694, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31624788

ABSTRACT

Antiplatelet therapy through inhibition of the adenosine diphosphate (ADP)/P2Y12 pathway is commonly used in the treatment of acute coronary syndrome (ACS). Although efficient in preventing platelet activation and thrombus formation, it increases the risk of bleeding complications. In patients with ACS receiving platelet aggregation inhibitors, that is, P2Y12 blockers (n = 923), we investigated the relationship between plasma and platelet-associated CD40L levels and bleeding events (n = 71). Treatment with P2Y12 inhibitors in patients with ACS did not affect plasma-soluble CD40L levels, but decreased platelet CD40L surface expression (pCD40L) and platelet-released CD40L (rCD40L) levels in response to stimulation as compared to healthy controls. In vitro inhibition of the ADP pathway in healthy control platelets reduced both pCD40L and rCD40L levels. In a multivariable analysis, the reduced pCD40L level observed in ACS patients was significantly associated with the risk of bleeding occurrence (adjusted odds ratio = 0.15; 95% confidence interval = 0.034-0.67). P2Y12 inhibitor-treated (ticagrelor) mice exhibited a 2.5-fold increase in tail bleeding duration compared with controls. A significant reduction in bleeding duration was observed on CD40L+/+ but not CD40L-/- platelet infusion. In addition, CD40L blockade in P2Y12 inhibitor-treated blood samples from a healthy human reduced thrombus growth over immobilized collagen under arterial flow. In conclusion, measurement of pCD40L may offer a novel approach to assessing bleeding risk in patients with ACS who are being treated with P2Y12 inhibitors.

10.
Cytometry B Clin Cytom ; 96(5): 426-435, 2019 09.
Article in English | MEDLINE | ID: mdl-31301165

ABSTRACT

BACKGROUND: Flow cytometry essentially focuses on surface-expressed proteins, with few protocols being devoted to intracellular components. We evaluated a two-step procedure using new formaldehyde-free permeabilization and staining reagents that allow the staining of platelets and red blood cells (RBCs) from whole blood. METHODS: Citrated blood was treated with the new staining protocol (NSP) or control reagent (phosphate-buffered solution bovine serum albumin) and stained with antibodies against surface or intracellular markers. The effects of the NSP on cell integrity, morphology, and content were evaluated. RESULTS: The NSP slightly reduced the cell count (~20%) and changed the RBC morphology with a 42% mean diameter reduction. Conversely, the NSP did not affect platelet discoid morphology and led to a minor size decrease (11%). These morphological changes neither impelled a gating strategy modification nor interfered with the discrimination among populations based on surface markers. The NSP provided intracellular access to all the tested antigens: CD62P, FXIII, and CD63 in platelets and glycated and fetal hemoglobin (HbA1c and HbF) and nucleic acid in RBCs. The NSP gave excellent intra-assay precision with minimal impact on cell morphology and fluorescence labelling over time (up to 24 h). CONCLUSIONS: With the ability to detect surface and intracellular antigens through a rapid preparation protocol without washing steps or toxic formaldehyde treatment, this NSP designed for research offers a marked improvement in the analysis of platelets and RBCs isolated directly from whole blood. Consequently, the NSP opens new avenues to investigate platelet degranulation and erythrocyte subpopulations. © 2019 International Clinical Cytometry Society.


Subject(s)
Blood Platelets/cytology , Erythrocytes/cytology , Blood Platelets/metabolism , Cell Membrane Permeability , Erythrocytes/metabolism , Flow Cytometry/methods , Humans
11.
Sci Rep ; 9(1): 9631, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31270351

ABSTRACT

Increased platelet activity occurs in type 2 diabetes mellitus (T2DM) and such platelet dysregulation likely originates from altered megakaryopoiesis. We initiated identification of dysregulated pathways in megakaryocytes in the setting of T2DM. We evaluated through transcriptomic analysis, differential gene expressions in megakaryocytes from leptin receptor-deficient mice (db/db), exhibiting features of human T2DM, and control mice (db/+). Functional gene analysis revealed an upregulation of transcripts related to calcium signaling, coagulation cascade and platelet receptors in diabetic mouse megakaryocytes. We also evidenced an upregulation (7- to 9.7-fold) of genes encoding stefin A (StfA), the human ortholog of Cystatin A (CSTA), inhibitor of cathepsin B, H and L. StfA/CSTA was present in megakaryocytes and platelets and its expression increased during obesity and diabetes in rats and humans. StfA/CSTA was primarily localized at platelet membranes and granules and was released upon agonist stimulation and clot formation through a metalloprotease-dependent mechanism. StfA/CSTA did not affect platelet aggregation, but reduced platelet accumulation on immobilized collagen from flowing whole blood (1200 s-1). In-vivo, upon laser-induced vascular injury, platelet recruitment and thrombus formation were markedly reduced in StfA1-overexpressing mice without affecting bleeding time. The presence of CA-074Me, a cathepsin B specific inhibitor significantly reduced thrombus formation in-vitro and in-vivo in human and mouse, respectively. Our study identifies StfA/CSTA as a key contributor of platelet-dependent thrombus formation in both rodents and humans.


Subject(s)
Blood Platelets/enzymology , Cystatin A/metabolism , Diabetes Mellitus, Experimental/complications , Megakaryocytes/enzymology , Thrombosis/prevention & control , Animals , Calcium Signaling , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Platelet Activation , Platelet Aggregation , Rats , Rats, Wistar , Thrombosis/etiology , Thrombosis/metabolism , Thrombosis/pathology
14.
Blood ; 130(8): 1026-1030, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28637664

ABSTRACT

Heritable platelet function disorders (PFDs) are genetically heterogeneous and poorly characterized. Pathogenic variants in RASGRP2, which encodes calcium and diacylglycerol-regulated guanine exchange factor I (CalDAG-GEFI), have been reported previously in 3 pedigrees with bleeding and reduced platelet aggregation responses. To better define the phenotype associated with pathogenic RASGRP2 variants, we compared high-throughput sequencing and phenotype data from 2042 cases in pedigrees with unexplained bleeding or platelet disorders to data from 5422 controls. Eleven cases harbored 11 different, previously unreported RASGRP2 variants that were biallelic and likely pathogenic. The variants included 5 high-impact variants predicted to prevent CalDAG-GEFI expression and 6 missense variants affecting the CalDAG-GEFI CDC25 domain, which mediates Rap1 activation during platelet inside-out αIIbß3 signaling. Cases with biallelic RASGRP2 variants had abnormal mucocutaneous, surgical, and dental bleeding from childhood, requiring ≥1 blood or platelet transfusion in 78% of cases. Platelets displayed reduced aggregation in response to adenosine 5'-diphosphate and epinephrine, but variable aggregation defects with other agonists. There were no other consistent clinical or laboratory features. These data enable definition of human CalDAG-GEFI deficiency as a nonsyndromic, recessive PFD associated with a moderate or severe bleeding phenotype and complex defects in platelet aggregation.


Subject(s)
Blood Platelets/pathology , Guanine Nucleotide Exchange Factors/genetics , Hemorrhage/genetics , Mutation/genetics , Alleles , Base Sequence , Female , Humans , Male , Pedigree
15.
Haematologica ; 102(6): 1006-1016, 2017 06.
Article in English | MEDLINE | ID: mdl-28255014

ABSTRACT

Congenital macrothrombocytopenia is a family of rare diseases, of which a significant fraction remains to be genetically characterized. To analyze cases of unexplained thrombocytopenia, 27 individuals from a patient cohort of the Bleeding and Thrombosis Exploration Center of the University Hospital of Marseille were recruited for a high-throughput gene sequencing study. This strategy led to the identification of two novel FLI1 variants (c.1010G>A and c.1033A>G) responsible for macrothrombocytopenia. The FLI1 variant carriers' platelets exhibited a defect in aggregation induced by low-dose adenosine diphosphate (ADP), collagen and thrombin receptor-activating peptide (TRAP), a defect in adenosine triphosphate (ATP) secretion, a reduced mepacrine uptake and release and a reduced CD63 expression upon TRAP stimulation. Precise ultrastructural analysis of platelet content was performed using transmission electron microscopy and focused ion beam scanning electron microscopy. Remarkably, dense granules were nearly absent in the carriers' platelets, presumably due to a biogenesis defect. Additionally, 25-29% of the platelets displayed giant α-granules, while a smaller proportion displayed vacuoles (7-9%) and autophagosome-like structures (0-3%). In vitro study of megakaryocytes derived from circulating CD34+ cells of the carriers revealed a maturation defect and reduced proplatelet formation potential. The study of the FLI1 variants revealed a significant reduction in protein nuclear accumulation and transcriptional activity properties. Intraplatelet flow cytometry efficiently detected the biomarker MYH10 in FLI1 variant carriers. Overall, this study provides new insights into the phenotype, pathophysiology and diagnosis of FLI1 variant-associated thrombocytopenia.


Subject(s)
Cytoplasmic Granules/metabolism , Thrombocytopenia/etiology , Adult , Blood Platelets/pathology , Blood Platelets/ultrastructure , Cell Nucleus/chemistry , Genetic Variation , Humans , Male , Megakaryocytes/pathology , Middle Aged , Platelet Aggregation/genetics , Proto-Oncogene Protein c-fli-1/genetics , Thrombocytopenia/congenital , Transcription, Genetic , Young Adult
16.
Haematologica ; 102(2): 282-294, 2017 02.
Article in English | MEDLINE | ID: mdl-27663637

ABSTRACT

Variants in ETV6, which encodes a transcription repressor of the E26 transformation-specific family, have recently been reported to be responsible for inherited thrombocytopenia and hematologic malignancy. We sequenced the DNA from cases with unexplained dominant thrombocytopenia and identified six likely pathogenic variants in ETV6, of which five are novel. We observed low repressive activity of all tested ETV6 variants, and variants located in the E26 transformation-specific binding domain (encoding p.A377T, p.Y401N) led to reduced binding to corepressors. We also observed a large expansion of megakaryocyte colony-forming units derived from variant carriers and reduced proplatelet formation with abnormal cytoskeletal organization. The defect in proplatelet formation was also observed in control CD34+ cell-derived megakaryocytes transduced with lentiviral particles encoding mutant ETV6. Reduced expression levels of key regulators of the actin cytoskeleton CDC42 and RHOA were measured. Moreover, changes in the actin structures are typically accompanied by a rounder platelet shape with a highly heterogeneous size, decreased platelet arachidonic response, and spreading and retarded clot retraction in ETV6 deficient platelets. Elevated numbers of circulating CD34+ cells were found in p.P214L and p.Y401N carriers, and two patients from different families suffered from refractory anemia with excess blasts, while one patient from a third family was successfully treated for acute myeloid leukemia. Overall, our study provides novel insights into the role of ETV6 as a driver of cytoskeletal regulatory gene expression during platelet production, and the impact of variants resulting in platelets with altered size, shape and function and potentially also in changes in circulating progenitor levels.


Subject(s)
Blood Platelets/metabolism , Germ-Line Mutation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/genetics , Thrombopoiesis/genetics , Antigens, CD34/metabolism , Blood Cell Count , Cell Differentiation , Family , Female , Gene Expression Regulation , Genotype , Humans , Hyperplasia , Male , Megakaryocytes/cytology , Megakaryocytes/metabolism , Megakaryocytes/pathology , Pedigree , Phenotype , Platelet Count , Proto-Oncogene Proteins c-ets/metabolism , Repressor Proteins/metabolism , Transcription, Genetic , ETS Translocation Variant 6 Protein
17.
Obesity (Silver Spring) ; 24(6): 1305-12, 2016 06.
Article in English | MEDLINE | ID: mdl-27130266

ABSTRACT

OBJECTIVE: To explore the pathophysiological profile of patients who have obesity and to investigate the potential role of circulating microparticles (MPs) in endothelial dysfunction in patients who have obesity. METHODS: The inflammatory and oxidative status and the cutaneous microvascular blood flow were characterized in 69 patients with android obesity and 46 subjects with normal weight (controls) by using laser Doppler flowmetry. Circulating MP levels were measured by flow cytometry, and endothelial nitric oxide synthase (eNOS) and NADPH oxidase (NOX) expression in MPs was investigated by Western blotting. MP effect on vascular reactivity was assessed in rat aorta rings. RESULTS: Patients with obesity showed endothelial dysfunction, hyperglycemia, inflammation, and oxidative stress. In controls, low MP levels were positively correlated with normal microvascular function. Western blot analysis revealed reduced eNOS and increased NOX4D expression in MPs from subjects with obesity compared with controls. However, this was not correlated with endothelial dysfunction parameters and did not impair ex vivo endothelium-dependent vasodilation. CONCLUSIONS: These results suggest that MPs do not contribute directly to endothelial dysfunction associated with obesity. Conversely, eNOS- and NOX-containing MPs could be involved in the compensatory mechanism of vascular endothelial cells to counteract the pathologic mechanisms underlying endothelial dysfunction.


Subject(s)
Cell-Derived Microparticles/enzymology , Endothelium, Vascular/physiopathology , NADPH Oxidases/metabolism , Nitric Oxide Synthase Type III/metabolism , Obesity/blood , Vascular Diseases/blood , Adult , Apolipoproteins A/blood , Apolipoproteins B/blood , Body Mass Index , Case-Control Studies , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Female , Humans , Male , NADPH Oxidases/genetics , Nitric Oxide Synthase Type III/genetics , Obesity/complications , Oxidative Stress , Thiobarbituric Acid Reactive Substances/metabolism , Triglycerides/blood , Vascular Diseases/complications , Vasodilation
18.
J Nutr Biochem ; 25(10): 1077-83, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25052163

ABSTRACT

Prospective studies reported an inverse correlation between 25-hydroxyvitamin D [25(OH)D] plasma levels and prevalence of obesity and type 2 diabetes. In addition, 25(OH)D status may be a determinant of obesity onset. However, the causality between these observations is not yet established. We studied the preventive effect of vitamin D3 (VD3) supplementation (15,000 IU/kg of food for 10 weeks) on onset of obesity in a diet-induced obesity mouse model. We showed that the VD3 supplementation limited weight gain induced by high-fat diet, which paralleled with an improvement of glucose homeostasis. The limitation of weight gain could further be explained by an increased lipid oxidation, possibly due to an up-regulation of genes involved in fatty acid oxidation and mitochondrial metabolism, leading to increased energy expenditure. Altogether, these data show that VD3 regulates energy expenditure and suggest that VD3 supplementation may represent a strategy of preventive nutrition to fight the onset of obesity and associated metabolic disorders.


Subject(s)
Diet, High-Fat/adverse effects , Dietary Supplements , Lipid Metabolism , Obesity/prevention & control , Vitamin D/administration & dosage , Animals , Energy Metabolism , Glucose/metabolism , Homeostasis , Male , Mice , Mice, Inbred C57BL , Mitochondria/genetics , Mitochondria/metabolism , Up-Regulation , Vitamin D/blood , Weight Gain
19.
J Exp Med ; 211(7): 1349-62, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24958846

ABSTRACT

The nature of an inherited platelet disorder was investigated in three siblings affected by severe bleeding. Using whole-exome sequencing, we identified the culprit mutation (cG742T) in the RAS guanyl-releasing protein-2 (RASGRP2) gene coding for calcium- and DAG-regulated guanine exchange factor-1 (CalDAG-GEFI). Platelets from individuals carrying the mutation present a reduced ability to activate Rap1 and to perform proper αIIbß3 integrin inside-out signaling. Expression of CalDAG-GEFI mutant in HEK293T cells abolished Rap1 activation upon stimulation. Nevertheless, the PKC- and ADP-dependent pathways allow residual platelet activation in the absence of functional CalDAG-GEFI. The mutation impairs the platelet's ability to form thrombi under flow and spread normally as a consequence of reduced Rac1 GTP-binding. Functional deficiencies were confined to platelets and megakaryocytes with no leukocyte alteration. This contrasts with the phenotype seen in type III leukocyte adhesion deficiency caused by the absence of kindlin-3. Heterozygous did not suffer from bleeding and have normal platelet aggregation; however, their platelets mimicked homozygous ones by failing to undergo normal adhesion under flow and spreading. Rescue experiments on cultured patient megakaryocytes corrected the functional deficiency after transfection with wild-type RASGRP2. Remarkably, the presence of a single normal allele is sufficient to prevent bleeding, making CalDAG-GEFI a novel and potentially safe therapeutic target to prevent thrombosis.


Subject(s)
Blood Coagulation Disorders, Inherited , Blood Platelets , Guanine Nucleotide Exchange Factors , Hemorrhage , Mutation , Platelet Aggregation/genetics , Adenosine Diphosphate/genetics , Adenosine Diphosphate/metabolism , Blood Coagulation Disorders, Inherited/genetics , Blood Coagulation Disorders, Inherited/metabolism , Blood Coagulation Disorders, Inherited/pathology , Blood Platelets/metabolism , Blood Platelets/pathology , Cell Line , Female , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Guanosine Triphosphate/genetics , Guanosine Triphosphate/metabolism , Hemorrhage/genetics , Hemorrhage/metabolism , Hemorrhage/pathology , Heterozygote , Homozygote , Humans , Male , Megakaryocytes/metabolism , Megakaryocytes/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex , Protein Kinase C/genetics , Protein Kinase C/metabolism , Shelterin Complex , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism
20.
J Biol Chem ; 288(41): 29621-32, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-23995838

ABSTRACT

Strongly activated "coated" platelets are characterized by increased phosphatidylserine (PS) surface expression, α-granule protein retention, and lack of active integrin αIIbß3. To study how they are incorporated into thrombi despite a lack of free activated integrin, we investigated the structure, function, and formation of the α-granule protein "coat." Confocal microscopy revealed that fibrin(ogen) and thrombospondin colocalized as "cap," a single patch on the PS-positive platelet surface. In aggregates, the cap was located at the point of attachment of the PS-positive platelets. Without fibrin(ogen) retention, their ability to be incorporated in aggregates was drastically reduced. The surface fibrin(ogen) was strongly decreased in the presence of a fibrin polymerization inhibitor GPRP and also in platelets from a patient with dysfibrinogenemia and a fibrinogen polymerization defect. In contrast, a fibrinogen-clotting protease ancistron increased the amount of fibrin(ogen) and thrombospondin on the surface of the PS-positive platelets stimulated with collagen-related peptide. Transglutaminases are also involved in fibrin(ogen) retention. However, platelets from patients with factor XIII deficiency had normal retention, and a pan-transglutaminase inhibitor T101 had only a modest inhibitory effect. Fibrin(ogen) retention was normal in Bernard-Soulier syndrome and kindlin-3 deficiency, but not in Glanzmann thrombasthenia lacking the platelet pool of fibrinogen and αIIbß3. These data show that the fibrin(ogen)-covered cap, predominantly formed as a result of fibrin polymerization, is a critical mechanism that allows coated (or rather "capped") platelets to become incorporated into thrombi despite their lack of active integrins.


Subject(s)
Blood Platelets/metabolism , Fibrin/metabolism , Fibrinogen/metabolism , Platelet Aggregation , Thrombospondins/metabolism , Blood Coagulation/drug effects , Blood Platelets/drug effects , Blotting, Western , Female , Flow Cytometry , Humans , Microscopy, Confocal , Oligopeptides/pharmacology , Phosphatidylserines/metabolism , Polymerization/drug effects , Thrombasthenia/blood , Thrombasthenia/metabolism , Thrombosis/metabolism , Transglutaminases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...