Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Anthropol Anz ; 81(2): 121-129, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-37869963

ABSTRACT

Muscle mass is one of the main components of an athlete's body weight. Its development is related to the biomechanical gesture and the strength required to physical activity. The aim of the study was to assess musculoskeletal development by means of anthropometric indices in sports with different demands. The sample comprised 780 subjects (58.2% male), age 23.8 ± 4.7 years. Six sports were included: olympic shooting, long-distance running, hockey, kayaking, artistic gymnastics, and weightlifting. Muscle mass (MM) was estimated by Lee's equation (Lee et al. 2000), in kg, as a % of weight, in kg in relation to height squared (MMI, kg/m2) and by allometric muscle mass index (AMMI, kg/mb, Canda 2022) relative to height (H), arm span (A-S), sitting height (S-T), biacromial breadth (BIAC) and tibial height (T-H). The mean, male vs. female, was: MM, 33.6 ± 4.4 kg vs. 23.1 ± 2.8 kg; 45.9 ± 3.7% vs. 39.7 ± 3.7%; MMI, 10.92 ± 1.35 vs. 8.63 ± 0.89; AMMIH 12.92 ± 1.57 vs. 11.04 ± 1.12; AMMIA-S, 14. 00 ± 1.61 vs. 12.10 ± 1.24; AMMIS-T, 38.69 ± 4.41 vs. 28.96 ± 2.88; AMMIBIAC, 154.76 ± 15.08 vs. 95.89 ± 9.23; AMMIT-H, 79.14 ± 9.93 vs. 54.65 ± 5.92. Males achieved higher values (p < 0.01) in all variables and modalities. ANOVA (p < 0.001) gave differences between modalities in all indices. Weightlifting had the highest mean in kg and indices, while the highest muscle percentage was found among artistic gymnastics. The lowest mean in kg and indices was in long distance races and in percentage in Olympic shooting. Allometric indices can be useful tools for the assessment and estimation of muscle mass regardless of the size of the athlete and in relation to the modality practiced.


Subject(s)
Body Composition , Sports , Female , Male , Humans , Young Adult , Adult , Body Composition/physiology , Anthropometry , Athletes , Muscles , Body Mass Index
2.
Arch. med. deporte ; 40(2): 85-93, Mar. 2023. tab, graf
Article in English | IBECS | ID: ibc-220551

ABSTRACT

Introduction: The relation of a biological variable to body mass is typically characterized by an allometric scaling law. Thepurpose of this study was to evaluate the relationship between oxygen consumption (VO2max), as a parameter of aerobicexercise performance, and body composition in rugby players. Material and method: The sample included one hundred and seven males of the Spanish rugby team. Age: 25.1 ± 3.4 years;body mass (BM): 89.8 ± 11.7 kg, height: 182.4 ± 6.5 cm; 52 backs (BR) and 55 forwards (FR). Maximum oxygen consumption(VO2max, l.min-1) was measured during treadmill exercise test with progressive workload. Anthropometrical measurementswere performed to estimate the fat-free mass (FFM) and muscle mass (MM). The allometric exponent “b” was determined fromequation y = a * xb; where “y” is VO2max and, “x” is the corresponding mass (BM, FFM or MM) and “a” is one constant. Results: The VO2max was 4.87 ± 0.56 l.min-1, BR vs FR, 4.67 ± 0.48 l.min-1 vs 5.06 ± 0.06 l.min-1; FFM: 77.5±7.7 kg, 73.5±7 kg vs81.3±6.3 kg; and MM: 52.9±6.5 kg, 49.6±5.6 kg vs 56.1±5.8 kg. The allometric exponents (p <0.0001; R2 = 0.4) were: 0.58 for BM(95% CI: 0.45 - 0.72); 0.71 for FFM (95% CI: 0.53 - 0.90); and 0.58 for MM (95% CI: 0.43 - 0.73). Significant differences (p <0.0001)were found BR vs FR according to their anthropometric characteristics and VO2max with respect to BM and MM without allo-metric scaling. While the VO2max indexed by means of allometric scaling was similar between BR and FR. Conclusions: In comparative studies, the VO2max should be expressed proportional to the 0.58 power of body mass or relatedto FFM in order to take into account the variability in of body composition in rugby players.(AU)


Introducción: La relación de una variable biológica con la masa corporal se caracteriza típicamente por una ley de escalaalométrica. El propósito del estudio fue evaluar la relación entre el consumo máximo de oxígeno (VO2max), como parámetrode rendimiento aeróbico, y la composición corporal en jugadores de rugby. Material y método: La muestra incluyó a 107 varones de la selección española de rugby. Edad: 25,1 ± 3,4 años; masa cor-poral (MC): 89,8 ± 11,7 kg, talla: 182,4 ± 6,5 cm; 52 defensas (DF) y 55 delanteros (DL). El VO2max (l.min-1) se determinó en tapizcon carga progresiva hasta el máximo esfuerzo. Mediante técnica antropométrica se estimó la masa libre de grasa (MLG) y lamasa muscular (MM). El exponente alométrico “b” se determinó por la ecuación y = a * xb; donde “y” es VO2max, “x” es la masacorrespondiente (MC, MLG o MM) y “a” es una constante. Resultados: El VO2max fue 4,87 ± 0,56 l.min-1, DF vs DL, 4,67 ± 0,48 l.min-1 vs 5,06 ± 0,06 l.min-1; MLG: 77,5 ± 7,7 kg, 73,5 ± 7 kg vs81,3 ± 6,3 kg; y MM: 52,9 ± 6,5 kg, 49,6 ± 5,6 kg vs 56,1 ± 5,8 kg. Los exponentes alométricos (p <0,0001; R2 = 0,4) fueron: 0,58para MC (IC 95%: 0,45 - 0,72); 0,71 para MLG (IC del 95%: 0,53 - 0,90); y 0,58 para MM (IC del 95%: 0,43 - 0,73). Se encontrarondiferencias significativas (p <0,0001) DF vs DL según sus características antropométricas y VO2max con respecto a BM y MM sinescalado alométrico. Mientras que el VO2max indexado mediante escalado alométrico fue similar entre DF y DL. Conclusiones: En estudios comparativos el VO2max debería expresarse a la potencia de 0.58 de MC o con MLG debido a lavariabilidad de la composición corporal en jugadores de rugby.(AU)


Subject(s)
Humans , Male , Young Adult , Adult , Athletes , Football , Body Mass Index , Body Size , Oxygen Consumption , Sports Medicine , Spain
3.
Anthropol Anz ; 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35132987

ABSTRACT

Muscle mass is estimated in athletes to measure the effects of training and determine if their muscle mass is optimized for their sport. The assessment depends on each subject's body size. The aim of the study was to analyze the most appropriate allometric relationship between muscle mass and the main size variables, as well as to define the most specific allometric indices for this population. The sample comprised 4651 elite athletes (65.3% male) from 41 sports. Muscle mass was estimated by Lee's equation using the anthropometric technique and correlated with nine anthropometric variables. Curvilinear regression was established according to an allometric model, y = a* xb, where y is the muscle mass, x are the size variables with the highest correlation coefficient, and b is the exponent of power. The powers obtained in males vs. females were: height, 1.7 vs. 1.5; sitting height, 2.0 vs. 1.7; arm span, 1.5 vs. 1.3; biacromial breadth, 1.7 vs. 1.4; and tibial height, 1.1 vs. 1.0. These new indices will allow the assessment of muscle mass, independent of the height or chosen size variable, and the calculation of muscle mass according to the subject's dimensions.

4.
Apunts, Med. esport (Internet) ; 56(211)July - September 2021. tab, graf
Article in English | IBECS | ID: ibc-214974

ABSTRACT

The aim of the study was to compare the muscle mass obtained by anthropometry and bioelectrical impedance, in athletes competing by weight categories. 109 (42 women y 67 men), age 21.4 ± 3.5 years, boxing (32), weightlifting (16), judo (28), karate (12), fighting (14) and taekwondo (7) practitioners were selected. The protocol included nineteen anthropometrics variables and a bioelectrical impedance analysis (akern®), estimating the muscle mass by anthropometry by the Lee's equation (2000) and by bioimpedance by Janssen's equation (2000), calculating the muscle mass index (IMM, kg/m2). In ten athletes it was examined whether in a second exploration the changes over time were similar by both techniques. The intraclass correlation coefficient (ICC) and the Bland-Altman analysis were applied to assess the concordance. Results: The IMM estimated by Lee vs Janssen, was in the female sample, 9.01 ± 1.01 kg/m2 vs 8.68 ± 1.1 kg/m2; and in the male sample, 11.17 ± 1.34 kg/m2 vs 11.04 ± 1.13 kg/m2 .The ICC was 0.945 [95%IC; 0.915-0.964]. The difference in the IMM between both techniques was 0.21; with a confidence range of 95% between +1.60 a -1.18. In the longitudinal study, five of the athletes controlled (50%), gave differences in the assessment of their IMM's changes. We concluded that even though in a statistical sense there is a high concordance between both equations being valid for epidemiological studies, the differences found cannot be assumed as interchangeable for the individual assessment of each athlete nor in comparative studies. (AU)


Subject(s)
Humans , Male , Female , Young Adult , Body Mass Index , Anthropometry/methods , Electric Impedance , Athletes
5.
Arch. med. deporte ; 36(194): 360-366, nov.-dic. 2019. tab, graf
Article in English | IBECS | ID: ibc-187295

ABSTRACT

INTRODUCTION: The aim of the research is to define the anthropometric profile of judokas by gender and weight categories and to estimate the most suitable competition weight according to their physical constitution using regression equations. METHODS: An cross-sectional retrospective anthropometric study was carried out on three hundred and eighteen judokas when their weight was no more than 5% over the limit stipulated for their category, 187 males and 131 females, in all seven weight categories; mean age was 22.5 ± 3.4 years (18-37 years). The anthropometric profile included forty-two direct variables. Their body composition was assessed by estimating the percentage of fat, muscle mass and theoretical minimal weight (TMW) and somatotype. Multiple linear regression equations were developed with each type of variable (lengths, breadths, girths) and in combination as predictors of body weight. RESULTS: Significant differences (p < 0.05) were established in the anthropometric profile between the male and female sam-ples and between the different weight categories whithin each gender. Only 2.4% of the judokas were at their TMW at the moment of the study. In males, height and 4 breadths (A-P chest, biiliocristal, femur and bimalleolar) explained 86.8% of the weight variation and 98.3% when girths were added, with an SEE of 4.2 and 1.5 kg, respectively. Among women, height and 3 breadths (A-P chest, biacromial and femur) gave 87.3% and, with girths, 97.9%, with an SEE of 3.3 and 1.3 kg, respectively. CONCLUSIONS: In competition, judokas do not reduce the percentage of fat to the minimum and will lose weight at the ex-pense of lean component. The regression equations developed may be useful to advise the most suitable weight category according to the anthropometric characteristics


INTRODUCCIÓN: Definir el perfil antropométrico del judoca por sexos y categorías de peso y estimar el peso de competición más adecuado según la constitución física mediante ecuaciones de regresión. MÉTODOS: Se realizó un estudio retrospectivo del control antropométrico de trescientos dieciocho judocas cuando su peso no excedía al 5 % del estipulado para su categoría, incluyendo 187 varones y 131 mujeres, de las siete categorías de peso, edad media de 22,5 ± 3,4 años (18-37 años). El perfil antropométrico incluyo cuarenta y dos variables directas. Se valoró la composición corporal, estimándose el porcentaje de grasa, la masa muscular y el peso mínimo teórico (PMT) y el somatotipo. Se desarrollaron las ecuaciones de regresión lineal múltiple con cada tipo de variable (longitudes, diámetros, perímetros) y en combinación como variables predictoras del peso corporal. RESULTADOS: Se establecieron diferencias significativas (p < 0,05) en el perfil antropométrico entre las muestras masculina y femenina y dentro de cada sexo entre las diferentes categorías de peso. Sólo el 2,4% de los judocas se encontraba en el PMT en el momento del estudio. En varones, la talla y 4 diámetros (A-P de tórax, biiliocrestal, fémur y bimaleolar) explicaron el 86,8% de la variación del peso y añadiendo perímetros el 98,3%, con un Se de 4,2 y 1,5 kg respectivamente. En las mujeres, talla y 3 diámetros (A-P de tórax, biacromial and fémur) el 87,3% y con perímetros el 97,9 %, con un Se de 3,3 y 1,3 kg respectivamente. CONCLUSIONES: El judoca en competición no baja al porcentaje de grasa mínimo y perderá peso a expensas del componente magro. Las ecuaciones de regresión desarrolladas pueden servir para aconsejar según las características antropométricas la categoría de peso más adecuada


Subject(s)
Humans , Male , Female , Adolescent , Young Adult , Adult , Anthropometry , Athletes , Martial Arts , Body Weight , Retrospective Studies , Reference Standards , Regression Analysis
6.
Eur Heart J Cardiovasc Imaging ; 20(7): 772-780, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30715268

ABSTRACT

AIMS: To determine the prevalence and characteristics of bicuspid aortic valve (BAV) among elite athletes and to analyse the effect of long-term exercise training on their aortas. METHODS AND RESULTS: Consecutive BAV and tricuspid aortic valve (TAV) elite athletes from a population of 5136 athletes evaluated at the Sports Medicine Center of the Spanish National Sports Council were identified using echocardiography. A total of 41 BAV elite athletes were matched with 41 TAV elite athletes, and 41 BAV non-athletic patients from three Spanish tertiary hospitals. Sixteen BAV elite athletes who had undergone at least two cardiac evaluations separated by more than 3 years were selected to assess their clinical course. The prevalence of BAV in elite athletes was 0.8%. The proximal ascending aorta was larger for both BAV groups in comparison to TAV athletes (P = 0.001). No differences in aortic diameters were found between BAV athletes and BAV non-athletes. In BAV elite athletes, the annual growth rates for aortic annulus, sinuses of Valsalva, sinotubular junction, and proximal ascending aorta were 0.04 ± 0.24, 0.11 ± 0.59, 0.14 ± 0.38, and 0.21 ± 0.44 mm/year, respectively. Aortic regurgitation was the only functional abnormality, but no significant progression was found. CONCLUSION: High-intensity training and sports competition may not aggravate BAV condition during elite athletes' careers. BAV elite athletes with mild-to-moderately dilated aortas may engage in high dynamic cardiovascular exercise without adverse consequences, although an echocardiographic follow-up is recommended.


Subject(s)
Aortic Valve/abnormalities , Athletes , Heart Valve Diseases/diagnostic imaging , Heart Valve Diseases/epidemiology , Aortic Diseases/diagnostic imaging , Aortic Diseases/epidemiology , Aortic Valve/diagnostic imaging , Bicuspid Aortic Valve Disease , Echocardiography, Doppler , Female , Humans , Male , Prevalence , Spain/epidemiology , Young Adult
7.
Apunts, Med. esport (Internet) ; 52(193): 29-36, ene.-mar. 2017. graf, tab, ilus
Article in Spanish | IBECS | ID: ibc-162148

ABSTRACT

El objetivo del trabajo fue determinar en los deportistas con IMC en rango de obesidad la relación entre índices de adiposidad y grasa corporal estimada por antropometría y establecer cuáles serían los más válidos para esta población. Se realizó un estudio retrospectivo de los deportistas con IMC igual o mayor de 30 kg/m2. La muestra fue de 173 deportistas (151 varones y 22 mujeres), edad de 23,3 ± 4,9 años, con 9,8 ± 5 años en competición y un entrenamiento de 16,6 ± 7,1 h/semana. El protocolo incluyó 15 variables y se calcularon los índices antropométricos relacionados con la adiposidad y la grasa corporal. Mediante las curvas ROC, se comprobó el grado de exactitud diagnóstica en relación con la obesidad (porcentaje de grasa elevado). Las variables antropométricas con mayor área bajo la curva fueron los pliegues cutáneos, y de estos el supraespinal (IC 95%: 0,889-0,974) con un punto de corte de 21 mm. Seguidos del perímetro de abdomen en relación con la talla (IC 95%: 0,784-0,916) con un punto de corte de 0,57. De los deportistas, el 72% hubieran sido mal catalogados de obesidad por su IMC, estableciéndose que hasta un IMC de 32,8 kg/m2 en varones puede considerarse como sobrepeso debido predominantemente a su componente magro o libre de grasa. Para diagnosticar la obesidad en los deportistas, la grasa corporal debe ser estimada mediante la toma de los pliegues cutáneos o, en su defecto, mediante la medición de la circunferencia de cintura en relación con la talla


The aim of this paper is to examine athletes whose BMI is in the obesity range, and to determine the relationship between their adiposity indices and their body fat measured by anthropometry, while establishing which would be the most valid for this population. A retrospective study was carried out on athletes with a BMI of 30 kg/m2 or higher. The sample consisted of 173 athletes (151 males and 22 females), aged 23.3 ± 4.9 years, with 9.8 ± 5 years in competition, training 16.6 ± 7.1 hours/week. The protocol included 15 variables and the calculation of anthropometric indices related to adiposity and body fat. ROC curves were used to check the level of diagnostic accuracy in relation to obesity (high fat percentage). The anthropometric variables with the greatest area under the curve were skinfolds and, in particular, supraspinale skinfolds (95% CI: 0.899-0.974), with a cut-off point of 21 mm. These were followed by waist circumference to height ratio (95% CI: 0.784-0.916) with a cut-off point of 0.57. As many as 72% of the athletes would have been wrongly classified as obese by their BMI. It was established that a BMI of up to 32.8 kg/m2 may be considered as overweight for males, mainly due to their lean or fat-free mass. In order to diagnose obesity in athletes, body fat should be assessed by means of skinfold measurements or, failing that, by measuring waist circumference to height ratios


Subject(s)
Humans , Male , Female , Adolescent , Young Adult , Body Mass Index , Body Composition , Obesity/epidemiology , Anthropometry/methods , Skinfold Thickness , Abdominal Circumference , Athletes/statistics & numerical data , Body Weights and Measures/statistics & numerical data , Retrospective Studies
8.
Arch. med. deporte ; 33(176): 375-381, nov.-dic. 2016. graf, tab
Article in Spanish | IBECS | ID: ibc-160570

ABSTRACT

Introducción: El objetivo del trabajo fue establecer la evolución del perfil antropométrico del gimnasta desde la categoría infantil hasta la senior, determinando tanto los efectos del crecimiento y maduración como los del entrenamiento de alta intensidad. Material y métodos: Se realizó un estudio longitudinal retrospectivo a dos varones practicantes de gimnasia artística que competían a nivel internacional. El protocolo incluyo: peso, talla, talla sentado, envergadura, nueve diámetros óseos, once perímetros corporales y ocho pliegues cutáneos. La técnica antropométrica siguió las directrices de la Sociedad Internacional para el Avance de la Cineantropometría. Se determinaron sus características antropométricas generales, la composición corporal (porcentaje de grasa estimado por la ecuación de Withers) y la proporcionalidad (puntuación-z mediante el método del Phantom de Ross y Wilson) de las variables estudiadas en los nueve controles realizados desde los 14 años hasta los 22 años. Resultados: La estatura adulta no se afectó por el entrenamiento intensivo, permaneciendo en su canal percentilar. La ganancia de peso de los gimnastas fue de 22,9 kg y 15,7 kg respectivamente; con un incremento del componente magro en relación a la talla (kg/m2 ), entre el primer y el último control, del 28 % y 19% respectivamente. La evolución del perfil de pliegues refleja un cambio en la distribución de la grasa subcutánea con pérdida en la extremidad inferior y ganancia en la zona escapular del tronco. Se constata la gran adaptación del sistema músculo-esquelético fundamentalmente a nivel del tren superior (hombros, tórax y brazos) y de forma más marcada hasta los 17- 18 años, aunque cada deportista de los estudiados tiene su propio ritmo biológico que marca pequeñas diferencias en el patrón evolutivo. Conclusiones: Al final de la categoría infantil el gimnasta tiene el perfil antropométrico que le caracteriza debido a su especialización temprana el cual se va acentuando hasta la categoría senior


Introduction: The aim of the present study was to establish longitudinal anthropometric profile of two gymnasts from infantile category to senior category, and determining the effects of both growth and maturation as well as of high intensity training. Material and methods: We have carried out a retrospective longitudinal study of two caucasian males that competed at international level in artistic gymnastics. The protocol included 32 variables: weight, height, sitting height, arm span, nine breadths, eleven girths and eight skinfolds. The procedures followed the International Society for the Advancement of Kinanthropometry guidelines. Their general anthropometric characteristics, body composition (percentage of body fat according to the equation of Withers) and proportionality (z-score applying Ross and Wilson Phantom-strategy) of anthropometric variables were determined from nine medical check-ups from age 14 years to 22 years. Results: Adult height is not affected by training intensity, with the athletes remaining in their percentile growth curve throughout the study. The gains of body mass in the gymnasts were 22.9 and 15.7 kg, with increase in lean tissue mass in relation to height (kg/m2 ), between the first and the last control, of 28% and 19%, respectively. The evolution of the skinfold profile reflects a change in the subcutaneous fat patterning with loss in lower limbs and increase in subscapular zone of trunk. The great adaptation of the musculoskeletal structure occurred primarily in the upper body (shoulders, chest and arms) and was more pronounced up to ages 17 to 18, although each athlete differed somewhat in their own biological rhythms. Conclusions: At the end of the infantile category, the gymnast had the anthropometric profile which characterized the early gymnastic specialization and this continues to be accentuated up to the senior category


Subject(s)
Humans , Gymnastics/physiology , Body Weights and Measures/statistics & numerical data , Growth and Development/physiology , Body Composition/physiology , Athletes/statistics & numerical data , Anthropometry/methods , Retrospective Studies
9.
Circ Cardiovasc Imaging ; 9(10)2016 Oct.
Article in English | MEDLINE | ID: mdl-27729365

ABSTRACT

BACKGROUND: There is limited information regarding the aortic root upper physiological limits in all planes in elite athletes according to static and dynamic cardiovascular demands and sex. METHODS AND RESULTS: A cross-sectional study was performed in 3281 healthy elite athletes (2039 men and 1242 women) aged 23.1±5.7 years, with body surface area of 1.9±0.2 m2 and 8.9±4.9 years and 19.2±9.6 hours/week of training. Maximum end-diastolic aortic root diameters were measured in the parasternal long axis by 2-dimensional echocardiography. Age, left ventricular mass, and body surface area were the main predictors of aortic dimensions. Raw values were greater in males than in females (P<0.0001) at all aortic root levels. Dimensions corrected by body surface area were higher in men than in women at the aortic annulus (13.1±1.7 versus 12.9±1.7 mm/m2; P=0.007), without significant differences at the sinus of Valsalva (16.3±1.9 versus 16.3±1.9 mm/m2; P=0.797), and were smaller in men at the sinotubular junction (13.6±1.8 versus 13.8±1.8 mm/m2; P=0.008) and the proximal ascending aorta (13.8±1.9 versus 14.1±1.9 mm/m2; P=0.001). Only 1.8% of men and 1.5% of women had values >40 mm and 34 mm, respectively. Raw and corrected aortic measures at all levels were significantly greater in sports, with a high dynamic component in both sexes, except for corrected values of the sinotubular junction in women. CONCLUSIONS: Aortic root dimensions in healthy elite athletes are within the established limits for the general population. This study describes the normal dimensions for healthy elite athletes classified according to sex and dynamic and static components of their sports.


Subject(s)
Aorta/diagnostic imaging , Athletes , Cardiomegaly, Exercise-Induced , Echocardiography, Doppler , Sports , Vascular Remodeling , Adolescent , Adult , Age Factors , Body Surface Area , Cross-Sectional Studies , Female , Heart Ventricles/diagnostic imaging , Humans , Male , Predictive Value of Tests , Reference Standards , Sex Factors , Young Adult
10.
Nutr. hosp ; 32(2): 765-770, ago. 2015. tab
Article in Spanish | IBECS | ID: ibc-140012

ABSTRACT

Introducción: la sarcopenia es un síndrome caracterizado por baja masa muscular junto con pérdida de fuerza y/o disminución del rendimiento físico. Debido al envejecimiento de nuestra población, se ha producido un aumento de su prevalencia relacionada con la edad, a la que se suman otros factores causados por ciertas enfermedades o la malnutrición. Objetivo: ofrecer una herramienta para el diagnóstico de sarcopenia que determine de forma accesible la pérdida de masa muscular. Material y métodos: se realizó un protocolo antropométrico estandarizado en 883 varones y 506 mujeres, sanos y activos, de edad entre 20 y 39 años. Se calcularon los siguientes índices de desarrollo muscular: perímetros (brazo, antebrazo, muslo y pierna), perímetros corregidos (brazo, muslo y pierna), áreas musculares transversales (CSA de brazo, muslo y pierna) y masa muscular total (kg), en porcentaje (%) y relativa a la talla (kg/m2) mediante la ecuación de Lee. Se fijó como punto de corte el percentil 2,5 (rango inferior del 95% del intervalo de confianza) para las variables estudiadas. Resultados: se encontraron diferencias significativas (p<0,0001) entre varones y mujeres en todos los indicadores. Los valores del punto de corte de diagnóstico de baja masa muscular fue en varones de 9,1 kg/m2, y en mujeres de 7,3 kg/m2. Y para las CSA (cm2) varón vs. mujer: brazo, 37,7 vs. 24,2; muslo, 154,3 vs. 115,8; y pierna, 78,8 vs. 60,2. Conclusiones: existe dimorfismo sexual que exige criterios diagnósticos diferenciados. La técnica antropométrica puede servir como screening de sarcopenia en el estudio de grandes poblaciones (AU)


Introduction: sarcopenia is a syndrome characterized by loss of muscle mass associated with reduced muscle strength and/or reduced functional capacity. The ageing of our population is producing an increase of the prevalence related with age in addition to other factors related to malnutrition and certain diseases. The aim of this study was to provide a tool for diagnosing sarcopenia while determining in an accessible way the loss of muscle mass. Material and methods: an anthropometric standardized protocol was completed on 883 men and 506 women, healthy and active, aged 20-39 years. The following muscular development indices were calculated: body circumferences (upper arm, forearm, thigh, and calf) corrected circumferences (upper arm, thigh and calf), cross-sectional area (CSA, upper arm, thigh, and calf) and whole-body muscle mass (kg), and as a percentage (%) and in relation to height (kg/m2) by Lee’s equation. The cut-off point was established as the 2.5 percentile (lower endpoint of the 95% confidence interval) for the analyzed studied. Results: significant differences by gender (p<0.0001) were found in all the indicators analyzed. The cut-off points of the loss of skeletal muscle mass were 9,1 kg/m2 in men; and 7.3 kg/m2 in women. And in the CSA (cm2), men vs. women: upper arm, 37.7 vs. 24.2; thigh, 154.3 vs. 115.8; and calf, 78.8 vs. 60.2. Conclusions: there is sexual dimorphism which requires considering differentiated diagnostic criteria. The anthropometric technique can serve as screening method for sarcopenia on the study of large populations (AU)


Subject(s)
Adult , Female , Humans , Male , Anthropometry/instrumentation , Sarcopenia/diagnosis , Psychomotor Performance/physiology , Muscle Development/physiology , Body Weight/physiology , Malnutrition/complications , Malnutrition/therapy , Confidence Intervals , Cross-Sectional Studies , Retrospective Studies , Body Mass Index
11.
Apunts, Med. esport ; 49(183): 75-84, jul.-sept. 2014. tab
Article in Spanish | IBECS | ID: ibc-129429

ABSTRACT

El triatlón combina 3 modalidades deportivas de resistencia y necesita unas características físicas para optimizar el rendimiento de cada segmento. El objetivo fue determinar el perfil morfológico del triatleta. Se analizaron retrospectivamente 153 protocolos incluyendo: peso, talla, perímetros, diámetros, longitudes y pliegues cutáneos. Se dividieron las muestras masculina y femenina en sénior y junior, y los sénior en primer y segundo nivel competitivo. El somatotipo fue ecto-mesomórfico, excepto en mujeres junior, que fue central. Los sénior tuvieron menor porcentaje graso (Whiters, 1987) que los junior (varones 7,4 vs 8,5; mujeres 13,9 vs 16,8), y las mujeres de nivel 1 respecto al 2 (11,8 vs 16,2). La masa muscular (Lee, 2000) fue mayor en sénior respecto a los junior, en varones en kilos (32,1 vs 30,9) y en mujeres en porcentaje (42,8 vs 41); las mujeres de nivel 1 respecto al 2 (44,2 vs 41,2). Las áreas musculares transversales (Heysmfield, 1982) fueron mayores en sénior varones en brazo y muslo respecto al junior, y mujeres sénior de nivel 1 mayor en muslo en relación al 2. Los índices se situaron en rango medio, teniendo los sénior varones un mayor índice braquial que los junior. Los varones hasta la etapa sénior no alcanzan el desarrollo musculoesquelético del tren superior; mientras que las mujeres lo alcanzan en la etapa junior. En las mujeres sénior su nivel de rendimiento lo marca una mayor edad y niveles de grasa más bajos. Los triatletas deberán tener un peso con bajo porcentaje graso y un componente musculoesquelético en rango medio


The triathlon combines three resistance sport disciplines and requires physical characteristics to optimize the performance of each segment. The aim of this study was to determine the morphological profile of the triathlete. A retrospective analysis was performed on 153 protocols including: weight, height, perimeters, diameters, lengths, and skin folds. The male and female samples were divided into senior and junior, and senior into first and second ranking levels. The somatotype was ecto-mesomorph, except for junior females, for which it was central. The senior category had a fat percentage (Withers, 1987) lower than the junior, men 7.4 vs.8.5; females 13.9 vs. 16.8; and level 1 compared to level 2 in females, 11.8 vs. 16.2. Muscle mass (Lee, 2000) for the senior was higher than for the junior, in males in kilograms (32.1 vs.30.9), and females in percentage (42.8 vs. 41); level 1 female compared to 2 (44.2 vs. 41.2).Muscle cross-section areas (Heysmfield, 1982) in arm and thigh were higher in senior male than in junior male; and for senior female in the thigh it was higher in level 1 than in level 2. The indices were in the middle range, the senior male having a brachial index greater than the junior male. Males only reached the senior phase in the upper body musculoskeletal development; while females reach it in the junior phase. The performance in the senior females is marked by greater age and lower fat levels. Triathletes should have a weight with low percentage of body fat and a musculoskeletal component in the medium range


Subject(s)
Humans , Male , Female , Young Adult , Adult , Body Composition/physiology , Athletes/classification , Athletes/statistics & numerical data , Somatotypes/physiology , Body Height/physiology , Muscle Development/physiology , Biotypology , Body Weight/physiology
12.
Rev Esp Cardiol ; 63(7): 810-9, 2010 Jul.
Article in English, Spanish | MEDLINE | ID: mdl-20609315

ABSTRACT

INTRODUCTION AND OBJECTIVES: Angiotensin-converting enzyme (ACE) is associated with the development of cardiac hypertrophy and improved physical fitness. The objective of this study was to investigate the relationship between the ACE gene insertion/deletion (I/D) polymorphism and adaptation to sports training. METHODS: The study included 299 elite Spanish athletes (193 men and 106 women) from 32 different sports disciplines, which were grouped according to their static and dynamic components. All participants underwent body composition analysis, Doppler echocardiography at rest, and ergospirometry. Their ACE genotype was determined using the polymerase chain reaction. RESULTS: The most common genotype in both males and females was the deletion-insertion (DI) heterozygote (57.5% and 54.7%, respectively), followed by the DD homozygote (30.6% and 34.9%), and the II homozygote (11.9% and 10.4%). Differences in morphometric and functional cardiac adaptation were observed between the different sports disciplines, but there was no statistically significant relationship with the ACE I/D polymorphism. Moreover, when athletes with different genotypes were compared, the only differences observed were between the DD and DI groups in female athletes, who differed in body mass index and longitudinal right atrial dimension. CONCLUSIONS: The ACE I/D polymorphism did not appear to influence cardiovascular adaptation in response to training. However, the DI genotype was the most common, probably because the sample was biased by being made up of elite athletes.


Subject(s)
Adaptation, Physiological/physiology , Cardiovascular Physiological Phenomena , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Sports/physiology , Adult , Anthropometry , Female , Heterozygote , Homozygote , Humans , Male , Physical Fitness/physiology , Polymorphism, Genetic , Spirometry , Young Adult
13.
Rev. esp. cardiol. (Ed. impr.) ; 63(7): 810-819, jul. 2010. tab, ilus
Article in Spanish | IBECS | ID: ibc-79986

ABSTRACT

Introducción y objetivos. La enzima de conversión de angiotensina (ECA) se relaciona con el desarrollo de hipertrofia cardiaca y mejora de la condición física. El objetivo del estudio es analizar la relación entre el polimorfismo inserción/deleción (I/D) del gen de la ECA y la adaptación al entrenamiento. Métodos. Se estudió a 299 deportistas españoles de alto nivel (193 varones y 106 mujeres) de 32 disciplinas deportivas, agrupadas según sus componentes estático y dinámico, mediante análisis de la composición corporal, eco-Doppler en reposo y ergoespirometría. El genotipo de la ECA se determinó mediante la técnica de la reacción en cadena de la polimerasa (PCR). Resultados. El genotipo más frecuente fue el heterocigoto DI (el 57,5 y el 54,7%), seguido de los homocigotos DD (el 30,6 y el 34,9%) e II (el 11,9 y el 10,4%), en varones y mujeres respectivamente. Hay diferencias en las adaptaciones morfológicas y funcionales entre las modalidades deportivas, pero no se obtuvo asociación estadísticamente significativa con relación al polimorfismo I/D de la ECA. En el estudio comparativo entre los distintos genotipos, sólo en la muestra femenina se encontraron diferencias entre los grupos DD y DI en el índice de masa corporal y en la dimensión superoinferior de la aurícula derecha. Conclusiones. El polimorfismo I/D del gen de la ECA parece que no influye en la adaptación cardiovascular al entrenamiento; sin embargo, el genotipo DI es el más frecuente, probablemente debido a un sesgo de la muestra, compuesta por deportistas de élite (AU)


Introduction and objectives. Angiotensin-converting enzyme (ACE) is associated with the development of cardiac hypertrophy and improved physical fitness. The objective of this study was to investigate the relationship between the ACE gene insertion/deletion (I/D) polymorphism and adaptation to sports training. Methods. The study included 299 elite Spanish athletes (193 men and 106 women) from 32 different sports disciplines, which were grouped according to their static and dynamic components. All participants underwent body composition analysis, Doppler echocardiography at rest, and ergospirometry. Their ACE genotype was determined using the polymerase chain reaction. Results. The most common genotype in both males and females was the deletion-insertion (DI) heterozygote (57.5% and 54.7%, respectively), followed by the DD homozygote (30.6% and 34.9%), and the II homozygote (11.9% and 10.4%). Differences in morphometric and functional cardiac adaptation were observed between the different sports disciplines, but there was no statistically significant relationship with the ACE I/D polymorphism. Moreover, when athletes with different genotypes were compared, the only differences observed were between the DD and DI groups in female athletes, who differed in body mass index and longitudinal right atrial dimension. Conclusions. The ACE I/D polymorphism did not appear to influence cardiovascular adaptation in response to training. However, the DI genotype was the most common, probably because the sample was biased by being made up of elite athletes (AU)


Subject(s)
Humans , Male , Female , Adult , Angiotensin-Converting Enzyme Inhibitors/metabolism , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/metabolism , Sports/physiology , Body Composition/physiology , Anthropometry/methods , Exercise Test/methods , Exercise Test , Physical Exertion/physiology , Body Composition/radiation effects , Informed Consent/standards , Spirometry/trends
14.
J Physiol Anthropol ; 28(2): 71-82, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19346667

ABSTRACT

Knowledge of stature is necessary for evaluating nutritional status and for correcting certain functional parameters. Measuring stature is difficult or impossible in bedridden or wheelchair-bound persons and may also be diminished by disorders of the spinal column or extremities. The purpose of this work is to develop estimation equations for young adult athletes for their subsequent application to disabled persons. The main sample comprised 445 male and 401 female sportspersons. Cross validation was also performed on 100 males and 101 females. All were Caucasian, the males being over 21 and the females over 18, and all practiced some kind of sport. The following variables were included: stature, sitting height, arm span, and lengths of upper arm, forearm, hand, thigh, lower leg, and foot. Simple and multiple regression analyses were performed using stature as a dependent variable and the others as predictive variables. The best equation for males (R(2)=0.978; RMSE=1.41 cm; PE=1.54 cm) was stature: 1.346+1.023 * lower leg+0.957 * sitting height+0.530 * thigh+0.493 * upper arm+0.228 * forearm. For females (R(2)=0.959; RMSE=1.57 cm; PE=1.25 cm) it was stature: 1.772+0.159 * arm span+0.957 * sitting height+0.424 * thigh+0.966 * lower leg. Alternative equations were developed for when a particular variable cannot be included for reasons of mobility, technical difficulty, or segment loss.


Subject(s)
Body Height , Adult , Arm , Body Weight , Female , Foot , Forearm , Hand , Humans , Leg , Male , Sports , Thigh , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...