Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Radiography (Lond) ; 28(2): 353-359, 2022 05.
Article in English | MEDLINE | ID: mdl-34953726

ABSTRACT

Patient contact shielding has been in use for many years in radiology departments in order to reduce the effects and risks of ionising radiation on certain organs. New technologies in projection imaging and CT scanning such as digital receptors and automatic exposure control (AEC) systems have reduced doses and improved image consistency. These changes and a greater understanding of both the benefits and the risks from the use of shielding have led to a review of shielding use in radiology. A number of professional bodies have already issued guidance in this regard. This paper represents the current consensus view of the main bodies involved in radiation safety and imaging in Europe: European Federation of Organisations for Medical Physics, European Federation of Radiographer Societies, European Society of Radiology, European Society of Paediatric Radiology, EuroSafe Imaging, European Radiation Dosimetry Group (EURADOS), and European Academy of DentoMaxilloFacial Radiology (EADMFR). It is based on the expert recommendations of the Gonad and Patient Shielding (GAPS) Group formed with the purpose of developing consensus in this area. The recommendations are intended to be clear and easy to use. They are intended as guidance, and they are developed using a multidisciplinary team approach. It is recognised that regulations, custom and practice vary widely on the use of patient shielding in Europe and it is hoped that these recommendations will inform a change management program that will benefit patients and staff.


Subject(s)
Radiology , Child , Consensus , Humans , Radiation Dosage , Radiography , Radiology/methods , Tomography, X-Ray Computed/methods
2.
J Radiol Prot ; 41(2)2021 06 01.
Article in English | MEDLINE | ID: mdl-33725675

ABSTRACT

Ring dosimeters for personal dosimetry are calibrated in accredited laboratories following ISO 4037-3 guidelines. The simultaneous irradiation of multiple dosimeters would save time, but has to be carefully studied, since the scattering conditions could change and influence the absorbed dose in nearby dosimeters. Monte Carlo simulations using PENELOPE-2014 were performed to explore the need to increase the uncertainty ofHp0.07in the simultaneous irradiation of three and five DXT-RAD 707H-2 (Thermo Scientific) ring dosimeters with beam qualities: N-30, N-80 and N-300. Results show that the absorbed dose in each dosimeter is compatible with each of the others and with the reference simulation (a single dosimeter), with a coverage probability of 95% (k= 2). Comparison with experimental data yielded consistent results with the same coverage probability. Therefore, five ring dosimeters can be simultaneously irradiated with beam qualities ranging, at least, between N-30 and N-300 with a negligible impact on the uncertainty ofHp0.07.


Subject(s)
Radiation Dosimeters , Radiometry , Calibration , Computer Simulation , Monte Carlo Method
3.
Phys Med ; 77: 10-17, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32763729

ABSTRACT

Measurements of eye lens dose using over apron dosimeters with a geometric correction factor is an international accepted practice. However, further knowledge regarding geometric correction factors in different contexts is required. The authors studied the correlation between eye lens dose and over apron dosimetry for different medical specialties in eleven hospitals, using a standardized protocol, two independent over apron dosimeters (worn at chest and at neck levels) and a dedicated calibration procedure. The results show good correlation between subjects working on the same medical specialty for 5 specialties: Interventional Radiology, Vascular Surgery, Vascular Radiology, Hemodynamics and Neuroradiology. The geometric correction factors resulting from this study could be used to estimate eye lens dose using over apron dosimeters, which are more comfortable than eye lens dosimeters, as reported by the study subjects, as long as the increased uncertainty of the over apron dosimetry compared to the dedicated eye lens dosimetry is acceptable.


Subject(s)
Lens, Crystalline , Occupational Exposure , Radiation Protection , Humans , Occupational Exposure/analysis , Protective Clothing , Radiation Dosage , Radiology, Interventional
4.
J Radiol Prot ; 38(2): 549-564, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29498356

ABSTRACT

Fluoroscopy guided interventional procedures provide remarkable benefits to patients. However, medical staff working near the scattered radiation field may be exposed to high cumulative equivalent doses, thus requiring shielding devices such as lead aprons and thyroid collars. In this situation, it remains an acceptable practice to derive equivalent doses to the eye lenses or other unprotected soft tissues with a dosimeter placed above these protective devices. Nevertheless, the radiation backscattered by the lead shield differs from that generated during dosimeter calibration with a water phantom. In this study, a passive personal thermoluminescent dosimeter (TLD) was modelled by means of the Monte Carlo (MC) code Penelope. The results obtained were validated against measurements performed in reference conditions in a secondary standard dosimetry laboratory. Next, the MC model was used to evaluate the backscatter correction factor needed for the case where the dosimeter is worn over a lead shield to estimate the personal equivalent dose H p (0.07) to unprotected soft tissues. For this purpose, the TLD was irradiated over a water slab phantom with a photon beam representative of the result of a fluoroscopy beam scattered by a patient. Incident beam angles of 0° and 60°, and lead thicknesses between the TLD and phantom of 0.25 and 0.5 mm Pb were considered. A backscatter correction factor of 1.23 (independent of lead thickness) was calculated comparing the results with those faced in reference conditions (i.e., without lead shield and with an angular incidence of 0°). The corrected dose algorithm was validated in laboratory conditions with dosimeters irradiated over a thyroid collar and angular incidences of 0°, 40° and 60°, as well as with dosimeters worn by interventional radiologists and cardiologists. The corrected dose algorithm provides a better approach to estimate the equivalent dose to unprotected soft tissues such as eye lenses. Dosimeters that are not shielded from backscatter radiation might underestimate personal equivalent doses when worn over a lead apron and, therefore, should be specifically characterized for this purpose.


Subject(s)
Fluoroscopy/methods , Radiation Dosimeters/standards , Thermoluminescent Dosimetry/standards , Calibration , Equipment Design , Lead , Protective Clothing , Thermoluminescent Dosimetry/instrumentation
5.
Med Phys ; 43(5): 2087, 2016 May.
Article in English | MEDLINE | ID: mdl-27147321

ABSTRACT

PURPOSE: High dose rate (HDR) brachytherapy for treatment of small skin lesions using the Leipzig and Valencia applicators is a widely used technique. These applicators are equipped with an attachable plastic cap to be placed during fraction delivery to ensure electronic equilibrium and to prevent secondary electrons from reaching the skin surface. The purpose of this study is to report on the dosimetric impact of the cap being absent during HDR fraction delivery, which has not been explored previously in the literature. METHODS: geant4 Monte Carlo simulations (version 10.0) have been performed for the Leipzig and Valencia applicators with and without the plastic cap. In order to validate the Monte Carlo simulations, experimental measurements using radiochromic films have been done. RESULTS: Dose absorbed within 1 mm of the skin surface increases by a factor of 1500% for the Leipzig applicators and of 180% for the Valencia applicators. Deeper than 1 mm, the overdosage flattens up to a 10% increase. CONCLUSIONS: Differences of treating with or without the plastic cap are significant. Users must check always that the plastic cap is in place before any treatment in order to avoid overdosage of the skin. Prior to skin HDR fraction delivery, the timeout checklist should include verification of the cap placement.


Subject(s)
Brachytherapy/instrumentation , Brachytherapy/methods , Radiometry , Computer Simulation , Monte Carlo Method , Plastics , Radiation Injuries/prevention & control , Radiometry/methods , Radiotherapy Dosage , Skin/radiation effects
6.
Med Phys ; 43(4): 1639, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27036563

ABSTRACT

PURPOSE: The aims of this study were (i) to design a new high-dose-rate (HDR) brachytherapy applicator for treating surface lesions with planning target volumes larger than 3 cm in diameter and up to 5 cm in size, using the microSelectron-HDR or Flexitron afterloader (Elekta Brachytherapy) with a (192)Ir source; (ii) to calculate by means of the Monte Carlo (MC) method the dose distribution for the new applicator when it is placed against a water phantom; and (iii) to validate experimentally the dose distributions in water. METHODS: The penelope2008 MC code was used to optimize dwell positions and dwell times. Next, the dose distribution in a water phantom and the leakage dose distribution around the applicator were calculated. Finally, MC data were validated experimentally for a (192)Ir mHDR-v2 source by measuring (i) dose distributions with radiochromic EBT3 films (ISP); (ii) percentage depth-dose (PDD) curve with the parallel-plate ionization chamber Advanced Markus (PTW); and (iii) absolute dose rate with EBT3 films and the PinPoint T31016 (PTW) ionization chamber. RESULTS: The new applicator is made of tungsten alloy (Densimet) and consists of a set of interchangeable collimators. Three catheters are used to allocate the source at prefixed dwell positions with preset weights to produce a homogenous dose distribution at the typical prescription depth of 3 mm in water. The same plan is used for all available collimators. PDD, absolute dose rate per unit of air kerma strength, and off-axis profiles in a cylindrical water phantom are reported. These data can be used for treatment planning. Leakage around the applicator was also scored. The dose distributions, PDD, and absolute dose rate calculated agree within experimental uncertainties with the doses measured: differences of MC data with chamber measurements are up to 0.8% and with radiochromic films are up to 3.5%. CONCLUSIONS: The new applicator and the dosimetric data provided here will be a valuable tool in clinical practice, making treatment of large skin lesions simpler, faster, and safer. Also the dose to surrounding healthy tissues is minimal.


Subject(s)
Brachytherapy/instrumentation , Radiation Dosage , Skin Diseases/radiotherapy , Equipment Design , Humans , Iridium Radioisotopes/therapeutic use , Monte Carlo Method , Phantoms, Imaging , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Water
10.
J Radiol Prot ; 35(4): N33-41, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26457404

ABSTRACT

The purpose of this work is to evaluate the absorbed dose to the eye lenses due to the cone beam computed tomography (CBCT) system used to accurately position the patient during head-and-neck image guided procedures. The on-board imaging (OBI) systems (v.1.5) of Clinac iX and TrueBeam (Varian) accelerators were used to evaluate the imparted dose to the eye lenses and some additional points of the head. All CBCT scans were acquired with the Standard-Dose Head protocol from Varian. Doses were measured using thermoluminescence dosimeters (TLDs) placed in an anthropomorphic phantom. TLDs were calibrated at the beam quality used to reduce their energy dependence. Average dose to the lens due to the OBI systems of the Clinac iX and the TrueBeam were 0.71 ± 0.07 mGy/CBCT and 0.70 ± 0.08 mGy/CBCT, respectively. The extra absorbed dose received by the eye lenses due to one CBCT acquisition with the studied protocol is far below the 500 mGy threshold established by ICRP for cataract formation (ICRP 2011 Statement on Tissue Reactions). However, the incremental effect of several CBCT acquisitions during the whole treatment should be taken into account.


Subject(s)
Cone-Beam Computed Tomography , Lens, Crystalline/radiation effects , Radiotherapy Dosage , Head , Phantoms, Imaging , Thermoluminescent Dosimetry
11.
Med Phys ; 42(8): 4954-64, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26233221

ABSTRACT

PURPOSE: A surface electronic brachytherapy (EBT) device is in fact an x-ray source collimated with specific applicators. Low-energy (<100 kVp) x-ray beam dosimetry faces several challenges that need to be addressed. A number of calibration protocols have been published for x-ray beam dosimetry. The media in which measurements are performed are the fundamental difference between them. The aim of this study was to evaluate the surface dose rate of a low-energy x-ray source with small field applicators using different calibration standards and different small-volume ionization chambers, comparing the values and uncertainties of each methodology. METHODS: The surface dose rate of the EBT unit Esteya (Elekta Brachytherapy, The Netherlands), a 69.5 kVp x-ray source with applicators of 10, 15, 20, 25, and 30 mm diameter, was evaluated using the AAPM TG-61 (based on air kerma) and International Atomic Energy Agency (IAEA) TRS-398 (based on absorbed dose to water) dosimetry protocols for low-energy photon beams. A plane parallel T34013 ionization chamber (PTW Freiburg, Germany) calibrated in terms of both absorbed dose to water and air kerma was used to compare the two dosimetry protocols. Another PTW chamber of the same model was used to evaluate the reproducibility between these chambers. Measurements were also performed with two different Exradin A20 (Standard Imaging, Inc., Middleton, WI) chambers calibrated in terms of air kerma. RESULTS: Differences between surface dose rates measured in air and in water using the T34013 chamber range from 1.6% to 3.3%. No field size dependence has been observed. Differences are below 3.7% when measurements with the A20 and the T34013 chambers calibrated in air are compared. Estimated uncertainty (with coverage factor k = 1) for the T34013 chamber calibrated in water is 2.2%-2.4%, whereas it increases to 2.5% and 2.7% for the A20 and T34013 chambers calibrated in air, respectively. The output factors, measured with the PTW chambers, differ by less than 1.1% for any applicator size when compared to the output factors that were measured with the A20 chamber. CONCLUSIONS: Measurements using both dosimetric protocols are consistent, once the overall uncertainties are considered. There is also consistency between measurements performed with both chambers calibrated in air. Both the T34013 and A20 chambers have negligible stem effect. Any x-ray surface brachytherapy system, including Esteya, can be characterized using either one of these calibration protocols and ionization chambers. Having less correction factors, lower uncertainty, and based on measurements, performed in closer to clinical conditions, the TRS-398 protocol seems to be the preferred option.


Subject(s)
Brachytherapy/instrumentation , Brachytherapy/methods , Radiometry/instrumentation , Radiometry/methods , Calibration , Phantoms, Imaging , Photons , Uncertainty , Water , X-Rays
12.
Med Phys ; 42(5): 2132-42, 2015 May.
Article in English | MEDLINE | ID: mdl-25979008

ABSTRACT

PURPOSE: During the first part of the 20th century, (226)Ra was the most used radionuclide for brachytherapy. Retrospective accurate dosimetry, coupled with patient follow up, is important for advancing knowledge on long-term radiation effects. The purpose of this work was to dosimetrically characterize two (226)Ra sources, commonly used in Sweden during the first half of the 20th century, for retrospective dose-effect studies. METHODS: An 8 mg (226)Ra tube and a 10 mg (226)Ra needle, used at Radiumhemmet (Karolinska University Hospital, Stockholm, Sweden), from 1925 to the 1960s, were modeled in two independent Monte Carlo (MC) radiation transport codes: geant4 and mcnp5. Absorbed dose and collision kerma around the two sources were obtained, from which the TG-43 parameters were derived for the secular equilibrium state. Furthermore, results from this dosimetric formalism were compared with results from a MC simulation with a superficial mould constituted by five needles inside a glass casing, placed over a water phantom, trying to mimic a typical clinical setup. Calculated absorbed doses using the TG-43 formalism were also compared with previously reported measurements and calculations based on the Sievert integral. Finally, the dose rate at large distances from a (226)Ra point-like-source placed in the center of 1 m radius water sphere was calculated with geant4. RESULTS: TG-43 parameters [including gL(r), F(r, θ), Λ, and sK] have been uploaded in spreadsheets as additional material, and the fitting parameters of a mathematical curve that provides the dose rate between 10 and 60 cm from the source have been provided. Results from TG-43 formalism are consistent within the treatment volume with those of a MC simulation of a typical clinical scenario. Comparisons with reported measurements made with thermoluminescent dosimeters show differences up to 13% along the transverse axis of the radium needle. It has been estimated that the uncertainty associated to the absorbed dose within the treatment volume is 10%-15%, whereas uncertainty of absorbed dose to distant organs is roughly 20%-25%. CONCLUSIONS: The results provided here facilitate retrospective dosimetry studies of (226)Ra using modern treatment planning systems, which may be used to improve knowledge on long term radiation effects. It is surely important for the epidemiologic studies to be aware of the estimated uncertainty provided here before extracting their conclusions.


Subject(s)
Radiometry/methods , Radium/therapeutic use , Retrospective Studies , Brachytherapy/instrumentation , Brachytherapy/methods , Computer Simulation , Dose-Response Relationship, Radiation , Equipment Design , Glass , Humans , Models, Biological , Monte Carlo Method , Needles , Phantoms, Imaging , Radiotherapy Dosage , Radium/adverse effects , Sweden/epidemiology , Time Factors , Water
13.
Phys Med ; 31(3): 286-92, 2015 May.
Article in English | MEDLINE | ID: mdl-25681030

ABSTRACT

PURPOSE: To assess the radiation dose to the fetus of a pregnant patient undergoing high-dose-rate (HDR) (192)Ir interstitial breast brachytherapy, and to design a new patient setup and lead shielding technique that minimizes the fetal dose. METHODS: Radiochromic films were placed between the slices of an anthropomorphic phantom modeling the patient. The pregnant woman was seated in a chair with the breast over a table and inside a leaded box. Dose variation as a function of distance from the implant volume as well as dose homogeneity within a representative slice of the fetal position was evaluated without and with shielding. RESULTS: With shielding, the peripheral dose after a complete treatment ranged from 50 cGy at 5 cm from the caudal edge of the breast to <0.1 cGy at 30 cm. The shielding reduces absorbed dose by a factor of two near the breast and more than an order of magnitude beyond 20 cm. The dose is heterogeneous within a given axial plane, with variations from the central region within 50%. Interstitial HDR (192)Ir brachytherapy with breast shielding can be more advantageous than external-beam radiotherapy (EBRT) from a radiation protection point of view, as long as the distance to the uterine fundus is higher than about 10 cm. Furthermore, the weight of the shielding here proposed is notably lower than that needed in EBRT. CONCLUSIONS: Shielded breast brachytherapy may benefit pregnant patients needing localized radiotherapy, especially during the early gestational ages when the fetus is more sensitive to ionizing radiation.


Subject(s)
Brachytherapy/instrumentation , Breast Neoplasms/radiotherapy , Fetus/radiation effects , Iridium Radioisotopes/therapeutic use , Pregnancy Complications/radiotherapy , Radiation Protection/instrumentation , Radiotherapy Planning, Computer-Assisted , Adult , Brachytherapy/adverse effects , Female , Humans , Iridium Radioisotopes/adverse effects , Pregnancy , Radiometry , Radiotherapy Dosage
14.
Phys Med ; 30(8): 954-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24998334

ABSTRACT

INTRODUCTION AND PURPOSE: Dosimetry Check (DC) (Math Resolutions) is a commercial EPID-based dosimetry software, which allows performing pre-treatment and transit dosimetry. DC provides an independent verification of the treatment, being potentially of great interest due to the high benefits of the in vivo volumetric dosimetry, which guarantee the treatment delivery and anatomy constancy. The aim of this work is to study the differences in dose between DC and the Treatment Planning System (TPS) to establish an accuracy level of the system. MATERIAL AND METHODS: DC v.3.8 was used along with Varian Clinac iX accelerator equipped with EPID aS1000 and Eclipse v.10.0 with AAA and Acuros XB calculation algorithms. The DC evaluated version is based on a pencil beam calculation algorithm. Various plans were generated over several homogeneous and heterogeneous phantoms. Isocentre point doses and gamma analysis were evaluated. RESULTS: Total dose differences at the isocentre between DC and TPS for the studied plans are less than 2%, but single field contributions achieve greater values. In the presence of heterogeneities, the discrepancies can reach up to 15%. In transit mode, DC does not consider properly the couch attenuation, especially when there is an air gap between phantom and couch. CONCLUSIONS: The possibility of this in vivo evaluation and the potentiality of this new system have a very positive impact on improving patient QA. But improvements are required in both calculation algorithm and integration with the record and verify system.


Subject(s)
Radiometry/instrumentation , Radiotherapy, Intensity-Modulated/methods , Software , Algorithms , Humans , Phantoms, Imaging , Radiation Dosage , Radiometry/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated/instrumentation , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...