Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(11): e49572, 2012.
Article in English | MEDLINE | ID: mdl-23185367

ABSTRACT

Hyperglucagonemia is implicated in the pathophysiology of hyperglycemia. Antagonism of the glucagon receptor (GCGR) thus represents a potential approach to diabetes treatment. Herein we report the characterization of GRA1, a novel small-molecule GCGR antagonist that blocks glucagon binding to the human GCGR (hGCGR) and antagonizes glucagon-induced intracellular accumulation of cAMP with nanomolar potency. GRA1 inhibited glycogenolysis dose-dependently in primary human hepatocytes and in perfused liver from hGCGR mice, a transgenic line of mouse that expresses the hGCGR instead of the murine GCGR. When administered orally to hGCGR mice and rhesus monkeys, GRA1 blocked hyperglycemic responses to exogenous glucagon. In several murine models of diabetes, acute and chronic dosing with GRA1 significantly reduced blood glucose concentrations and moderately increased plasma glucagon and glucagon-like peptide-1. Combination of GRA1 with a dipeptidyl peptidase-4 inhibitor had an additive antihyperglycemic effect in diabetic mice. Hepatic gene-expression profiling in monkeys treated with GRA1 revealed down-regulation of numerous genes involved in amino acid catabolism, an effect that was paralleled by increased amino acid levels in the circulation. In summary, GRA1 is a potent glucagon receptor antagonist with strong antihyperglycemic efficacy in preclinical models and prominent effects on hepatic gene-expression related to amino acid metabolism.


Subject(s)
Gene Expression Regulation , Hypoglycemic Agents/pharmacology , Pyrazoles/pharmacology , Receptors, Glucagon/antagonists & inhibitors , beta-Alanine/analogs & derivatives , Administration, Oral , Animals , Dose-Response Relationship, Drug , Gene Expression Profiling , Glucagon/blood , Glucagon/chemistry , Glycogen/metabolism , Glycogenolysis , Hepatocytes/drug effects , Hormones/blood , Humans , Iodine Radioisotopes/chemistry , Liver/metabolism , Macaca mulatta , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Chemical , beta-Alanine/pharmacology
2.
Bioorg Med Chem Lett ; 17(3): 587-92, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17126016

ABSTRACT

A series of conformationally constrained tri-substituted ureas were synthesized, and their potential as glucagon receptor antagonists was evaluated. This effort resulted in the identification of compound 4a, which had a binding IC50 of 4.0 nM and was shown to reduce blood glucose levels at 3 mg/kg in glucagon-challenged mice containing a humanized glucagon receptor. Compound 4a was efficacious in correcting hyperglycemia induced by a high fat diet in transgenic mice at an oral dose as low as 3 mg/kg.


Subject(s)
Receptors, Glucagon/antagonists & inhibitors , Urea/analogs & derivatives , Urea/chemical synthesis , Animals , Blood Glucose/metabolism , CHO Cells , Chromatography, High Pressure Liquid , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Dietary Fats , Drug Design , Gastric Inhibitory Polypeptide/metabolism , Glucagon/antagonists & inhibitors , Half-Life , Humans , Hyperglycemia/chemically induced , Hyperglycemia/prevention & control , Indicators and Reagents , Mice , Mice, Transgenic , Molecular Conformation , Receptors, Glucagon/genetics , Urea/pharmacology
3.
Bioorg Med Chem ; 14(5): 1506-17, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16256355

ABSTRACT

The demonstration of pharmacodynamic efficacy of novel chemical entities represents a formidable challenge in the early exploration of synthetic lead classes. Here, we demonstrate a technique to validate the biological efficacy of novel antagonists of the human glucagon receptor (hGCGR) in the surgically removed perfused liver prior to the optimization of the pharmacokinetic properties of the compounds. The technique involves the direct observation by (13)C NMR of the biosynthesis of [(13)C]glycogen from [(13)C]pyruvate via the gluconeogenic pathway. The rapid breakdown of [(13)C]glycogen (glycogenolysis) following the addition of 50 pM exogenous glucagon is then monitored in real time in the perfused liver by (13)C NMR. The concentration-dependent inhibition of glucagon-mediated glycogenolysis is demonstrated for both the peptidyl glucagon receptor antagonist 1 and structurally diverse synthetic antagonists 2-7. Perfused livers were obtained from a transgenic mouse strain that exclusively expresses the functional human glucagon receptor, conferring human relevance to the activity observed with glucagon receptor antagonists. This technique does not provide adequate quantitative precision for the comparative ranking of active compounds, but does afford physiological evidence of efficacy in the early development of a chemical series of antagonists.


Subject(s)
Liver/metabolism , Receptors, Glucagon/antagonists & inhibitors , Animals , CHO Cells , Carbon Radioisotopes , Cricetinae , Humans , Liver Glycogen/biosynthesis , Magnetic Resonance Spectroscopy/methods , Male , Mice , Mice, Transgenic , Molecular Structure , Pyruvic Acid/metabolism , Receptors, Glucagon/metabolism , Time Factors
4.
Bioorg Med Chem Lett ; 15(20): 4564-9, 2005 Oct 15.
Article in English | MEDLINE | ID: mdl-16102966

ABSTRACT

A novel class of spiro-ureas has been discovered as potent human glucagon receptor antagonists in both binding and functional assays. Preliminary studies have revealed that compound 15 is an orally active human glucagon receptor antagonist in a transgenic murine pharmacodynamic model at 10 and 30 mpk. Compound 15 is orally bioavailable in several preclinical species and shows selectivity toward cardiac ion channels and other family B receptors, such as hGIP1 and hGLP.


Subject(s)
Receptors, Glucagon/antagonists & inhibitors , Spiro Compounds/pharmacology , Urea/pharmacology , Administration, Oral , Animals , CHO Cells , Cricetinae , Drug Evaluation, Preclinical , Humans , Mice , Mice, Transgenic , Models, Molecular , Spiro Compounds/chemistry , Urea/chemistry
5.
Bioorg Med Chem Lett ; 15(5): 1401-5, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15713396

ABSTRACT

A novel class of antagonists of the human glucagon receptor (hGCGR) has been discovered. Systematic modification of the lead compound identified substituents that were essential for activity and those that were amenable to further optimization. This SAR exploration resulted in the synthesis of 13, which exhibited good potency as an hGCGR functional antagonist (IC50 = 34 nM) and moderate bioavailability (36% in mice).


Subject(s)
Receptors, Glucagon/antagonists & inhibitors , Thiophenes/chemical synthesis , Thiophenes/pharmacology , Humans , Molecular Structure , Structure-Activity Relationship , Thiophenes/classification
6.
Eur J Pharmacol ; 501(1-3): 225-34, 2004 Oct 06.
Article in English | MEDLINE | ID: mdl-15464082

ABSTRACT

Glucagon receptor antagonists have been actively pursued as potential therapeutics for the treatment of type 2 diabetes. Peptidyl and non-peptidyl glucagon receptor antagonists have been shown to block glucagon-induced blood glucose elevation in both animals and humans. How the antagonists and the glucagon receptor interact in vivo has not been reported and is the subject of the current study. Using (125)I-labeled glucagon as a radiotracer, we developed an in vivo glucagon receptor occupancy assay in mice expressing a human glucagon receptor in place of the endogenous mouse glucagon receptor (hGCGR mice). Using this assay, we first showed that the glucagon receptor is expressed predominantly in liver, to a much lesser extent in kidney, and is below detection in several other tissues/organs in the mice. We subsequently showed that, at 2 mg/kg body weight (mg/pk) dosed intraperitoneally (i.p.), peptidyl glucagon receptor antagonist des-His-glucagon binds to approximately 78% of the hepatic glucagon receptor and blocks an exogenous glucagon-induced blood glucose elevation in the mice. Finally, we also showed that, at 10 and 30 mg/kg dosed orally (p.o.), compound A, a non-peptidyl small molecule glucagon receptor antagonist, occupied 65-70% of the hepatic glucagon receptor, and significantly diminished exogenous glucagon-induced blood glucose elevation in the mice. At 3 mg/kg, however, compound A occupied only approximately 39% of the hepatic glucagon receptor and did not affect exogenous glucagon-induced blood glucose elevation in the mice. Taken together, the results confirmed previous reports that glucagon receptors are present predominantly in the liver, and provide the first direct evidence that peptidyl and non-peptidyl glucagon receptor antagonists bind to the hepatic glucagon receptor in vivo, and that at least 60% receptor occupancy correlates with the glucose lowering efficacy by the antagonists in vivo.


Subject(s)
Blood Glucose/metabolism , Glucagon/analogs & derivatives , Glucagon/pharmacology , Hypoglycemic Agents/pharmacology , Liver/metabolism , Receptors, Glucagon/antagonists & inhibitors , Receptors, Peptide/antagonists & inhibitors , Animals , Blood Glucose/drug effects , Dose-Response Relationship, Drug , Glucagon/metabolism , Humans , Male , Mice , Mice, Knockout , Protein Binding/drug effects , Protein Binding/physiology , Receptors, Glucagon/metabolism , Receptors, Peptide/metabolism
7.
Biochem Biophys Res Commun ; 297(3): 600-6, 2002 Sep 27.
Article in English | MEDLINE | ID: mdl-12270137

ABSTRACT

It has been reported recently that the phosphorylated form of the immunomodulator FTY720 activates sphingosine 1-phosphate G protein-coupled receptors. Therefore, understanding the biology of this new class of receptors will be important in clarifying the immunological function of bioactive lysosphingolipid ligands. The S1P(4) receptor has generated interest due to its lymphoid tissue distribution. While the S1P(4) receptor binds the prototypical ligand, S1P, a survey of other lysosphingolipids demonstrated that 4D-hydroxysphinganine 1-phosphate, more commonly known as phytosphingosine 1-phosphate (PhS1P), binds to S1P(4) with higher affinity. Using radiolabeled S1P (S133P), the affinity of PhS1P for the S1P(4) receptor is 1.6nM, while that of S1P is nearly 50-fold lower (119+/-20nM). Radiolabeled PhS1P proved to be superior to S133P in routine binding assays due to improved signal-to-noise ratio. The present study demonstrates the utility of a novel radiolabeled probe, PhS133P, for in vitro studies of the S1P(4) receptor pharmacology.


Subject(s)
Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled , Saccharomyces cerevisiae Proteins , Sphingosine/analogs & derivatives , Sphingosine/pharmacokinetics , Animals , Basic-Leucine Zipper Transcription Factors , Binding Sites , Binding, Competitive , CHO Cells , Cell Line , Cell Membrane/metabolism , Cricetinae , Kinetics , Ligands , Phosphorus Radioisotopes , Receptors, Lysophospholipid , Trans-Activators/metabolism , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL
...