Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Int J Mol Med ; 53(5)2024 05.
Article in English | MEDLINE | ID: mdl-38488030

ABSTRACT

DNA methylation is an epigenetic modification that plays a key role in several cellular processes mediating the fine regulation of gene expression. Aberrant DNA methylation is observed in a wide range of pathologies, including cancer. Since these DNA modifications are transferred to the cell progenies and are stable over the time, the analysis of DNA methylation status has been proposed for diagnostic and prognostic purposes in cancer. Currently, DNA bisulfite conversion is the gold standard method for the high­throughput analysis of DNA methylation alterations. However, bisulfite treatment induces DNA fragmentation affecting its quality for the downstream analyses. In this field, it is mandatory to identify novel methods to overcome the limits of conventional approaches. In the present study, the Methylation­Sensitive Restriction Enzyme­droplet digital PCR (MSRE­ddPCR) assay was developed as a novel sensitive method for the analysis of DNA methylation of short genomic regions, combining the MSRE assay with the high­sensitivity ddPCR and using an exogenous methylation sequence as control. Setup and validation experiments were performed analyzing a methylation hotspot of the Solute Carrier Family 22 Member 17 in DNA samples derived from melanoma cell lines as well as from tissues and serum samples obtained from patients with melanoma and healthy controls. Compared with the standard MSRE approaches, the MSRE­ddPCR assay is more appropriate for the analysis of DNA methylation (methDNA) in samples with low amounts of DNA (up to 0.651 ng) showing a greater sensitivity. These findings suggested the potential clinical application of MSRE­ddPCR paving the way to the analysis of other methDNA hotspots in different tumors.


Subject(s)
DNA Methylation , Melanoma , Sulfites , Humans , DNA Methylation/genetics , Melanoma/diagnosis , Melanoma/genetics , Polymerase Chain Reaction/methods , DNA/genetics
2.
Front Pharmacol ; 14: 1191262, 2023.
Article in English | MEDLINE | ID: mdl-37397501

ABSTRACT

Introduction: The oncogenic transformation is driven by genetic and epigenetic alterations influencing cancer cell fate. These alterations also result in metabolic reprogramming by modulating the expression of membrane Solute Carrier (SLC) transporters involved in biomolecules trafficking. SLCs act as tumor suppressors or promoters influencing cancer methylome, tumor growth, immune-escape, and chemoresistance. Methods: This in silico study aimed to identify the deregulated SLCs in various tumor types compared to normal tissues by analyzing the TCGA Target GTEx dataset. Furthermore, the relationship between SLCs expression and the most relevant tumor features was tackled along with their genetic regulation mediated by DNA methylation. Results: We identified 62 differentially expressed SLCs, including the downregulated SLC25A27 and SLC17A7, as well as the upregulated SLC27A2 and SLC12A8. Notably, SLC4A4 and SLC7A11 expression was associated with favorable and unfavorable outcome, respectively. Moreover, SLC6A14, SLC34A2, and SLC1A2 were linked to tumor immune responsiveness. Interestingly, SLC24A5 and SLC45A2 positively correlated with anti-MEK and anti-RAF sensitivity. The expression of relevant SLCs was correlated with hypo- and hyper-methylation of promoter and body region, showing an established DNA methylation pattern. Noteworthy, the positive association of cg06690548 (SLC7A11) methylation with cancer outcome suggests the independent predictive role of DNA methylation at a single nucleotide resolution. Discussion: Although our in silico overview revealed a wide heterogeneity depending on different SLCs functions and tumor types, we identified key SLCs and pointed out the role of DNA methylation as regulatory mechanism of their expression. Overall, these findings deserve further studies to identify novel cancer biomarkers and promising therapeutic targets.

3.
Pharmaceutics ; 15(4)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37111737

ABSTRACT

Lung cancer (LC) represents the second most diagnosed tumor and the malignancy with the highest mortality rate. In recent years, tremendous progress has been made in the treatment of this tumor thanks to the discovery, testing, and clinical approval of novel therapeutic approaches. Firstly, targeted therapies aimed at inhibiting specific mutated tyrosine kinases or downstream factors were approved in clinical practice. Secondly, immunotherapy inducing the reactivation of the immune system to efficiently eliminate LC cells has been approved. This review describes in depth both current and ongoing clinical studies, which allowed the approval of targeted therapies and immune-checkpoint inhibitors as standard of care for LC. Moreover, the present advantages and pitfalls of new therapeutic approaches will be discussed. Finally, the acquired importance of human microbiota as a novel source of LC biomarkers, as well as therapeutic targets to improve the efficacy of available therapies, was analyzed. Therapy against LC is increasingly becoming holistic, taking into consideration not only the genetic landscape of the tumor, but also the immune background and other individual variables, such as patient-specific gut microbial composition. On these bases, in the future, the research milestones reached will allow clinicians to treat LC patients with tailored approaches.

4.
Front Cell Dev Biol ; 10: 945586, 2022.
Article in English | MEDLINE | ID: mdl-36211450

ABSTRACT

Several features of cancer cells such as proliferation, invasion, metastatic spreading, and drug resistance are affected by their interaction with several tumor microenvironment (TME) components, including neutrophil gelatinase-associated lipocalin (NGAL), solute carrier family 22 member 17 (SLC22A17), and matrix metallopeptidase 9 (MMP9). These molecules play a key role in tumor growth, invasion, and iron-dependent metabolism of cancer cells. However, the precise epigenetic mechanisms underlying the gene regulation of Lipocalin 2 (LCN2), SLC22A17, and MMP9 in cancer still remain unclear. To this purpose, computational analysis was performed on TCGA and GTEx datasets to evaluate the expression and DNA methylation status of LCN2, SLC22A17, and MMP9 genes in different tumor types. Correlation analysis between gene/isoforms expression and DNA methylation levels of LCN2, SLC22A17, and MMP9 was performed to investigate the role of DNA methylation in the modulation of these genes. Protein network analysis was carried out using reverse phase protein arrays (RPPA) data to identify protein-protein interactions of the LCN2-SLC22A17-MMP9 network. Furthermore, survival analysis was performed according to gene expression and DNA methylation levels. Our results demonstrated that LCN2 and MMP9 were mainly upregulated in most tumor types, whereas SLC22A17 was largely downregulated, representing a specific hallmark signature for all gastrointestinal tumors. Notably, the expression of LCN2, SLC22A17, and MMP9 genes was negatively affected by promoter methylation. Conversely, intragenic hypermethylation was associated with the overexpression of SLC22A17 and MMP9 genes. Protein network analysis highlighted the role of the LCN2-SLC22A17-MMP9 network in TME by the interaction with fibronectin 1 and claudin 7, especially in rectal tumors. Moreover, the impact of expression and methylation status of LCN2, SLC22A17, and MMP9 on overall survival and progression free interval was tumor type-dependent. Overall, our analyses provide a detailed overview of the expression and methylation status of LCN2, SLC22A17, and MMP9 in all TCGA tumors, indicating that the LCN2-SLC22A17-MMP9 network was strictly regulated by DNA methylation within TME. Our findings pave the way for the identification of novel DNA methylation hotspots with diagnostic and prognostic values and suitable for epi-drug targeting.

5.
Biomolecules ; 12(5)2022 05 10.
Article in English | MEDLINE | ID: mdl-35625609

ABSTRACT

Interleukin-6 (IL-6) is a pleiotropic cytokine involved in several mechanisms, and the alteration of IL-6 signaling leads to the overactivation of various processes including immunity, inflammation, and hemostasis. Although IL-6 increase has been documented in venous thromboembolic diseases, the exact involvement of IL-6 signaling in deep vein thrombosis (DVT) has not been fully understood. Consequently, we investigated the involvement of IL-6 trans-signaling in inflammatory events occurring in DVT, focusing on the role of the interleukin-6 receptor (IL6-R) Asp358Ala variant. The circulating levels of IL-6, soluble IL6-R (sIL6-R), and soluble glycoprotein 130, as well as the Asp358Ala genotyping, were assessed in a consecutive cohort of DVT patients and healthy controls. The results indicated that IL-6 was higher in DVT compared to controls. Moreover, sIL6-R levels were strongly correlated to Asp358Ala variant in both groups, showing a high frequency of this mutation across all samples. Interestingly, our results showed a high frequency of both Asp358Ala mutation and raised IL-6 levels in DVT patients (OR = 21.32; p ≤ 0.01), highlighting that this mutation could explain the association between IL-6 overactivation and DVT outcome. Overall, this study represents a proof of concept for the targeting of IL-6 trans-signaling as a new strategy for the DVT adjuvant therapy.


Subject(s)
Interleukin-6/blood , Receptors, Interleukin-6/genetics , Venous Thrombosis , Humans , Inflammation , Interleukin-6/genetics , Signal Transduction , Venous Thrombosis/genetics
6.
Int J Oncol ; 60(5)2022 May.
Article in English | MEDLINE | ID: mdl-35383859

ABSTRACT

Breast and ovarian cancer represent two of the most common tumor types in females worldwide. Over the years, several non­modifiable and modifiable risk factors have been associated with the onset and progression of these tumors, including age, reproductive factors, ethnicity, socioeconomic status and lifestyle factors, as well as family history and genetic factors. Of note, BRCA1 and BRCA2 are two tumor suppressor genes with a key role in DNA repair processes, whose mutations may induce genomic instability and increase the risk of cancer development. Specifically, females with a family history of breast or ovarian cancer harboring BRCA1/2 germline mutations have a 60­70% increased risk of developing breast cancer and a 15­40% increased risk for ovarian cancer. Different databases have collected the most frequent germline mutations affecting BRCA1/2. Through the analysis of such databases, it is possible to identify frequent hotspot mutations that may be analyzed with next­generation sequencing (NGS) and novel innovative strategies. In this context, NGS remains the gold standard method for the assessment of BRCA1/2 mutations, while novel techniques, including droplet digital PCR (ddPCR), may improve the sensitivity to identify such mutations in the hereditary forms of breast and ovarian cancer. On these bases, the present study aimed to provide an update of the current knowledge on the frequency of BRCA1/2 mutations and cancer susceptibility, focusing on the diagnostic potential of the most recent methods, such as ddPCR.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Genes, BRCA1 , Genes, BRCA2 , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Mutation , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Polymerase Chain Reaction
7.
Pharmaceutics ; 14(3)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35335966

ABSTRACT

The targeting of the Mitogen-Activated Protein Kinase (MAPK) signalling pathway in melanoma improves the prognosis of patients harbouring the V-Raf Murine Sarcoma Viral Oncogene Homolog B1 (BRAF) mutation. However, a fraction of these patients may experience tumour progression due to resistance to targeted therapy. Mutations affecting the Phosphoinositol-3-Kinase (PI3K)-Akt pathway may favour the onset of drug resistance, suggesting the existence of a crosstalk between the MAPK and PI3K-Akt pathways. We hypothesized that the inhibition of both pathways may be a therapeutic option in resistant melanoma. However, conflicting data have been generated in this context. In this study, three different A375 cell melanoma models either overexpressing or not expressing the wild-type or mutated form of the PhosphatidylInositol-4,5-bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA) gene were used to clarify the therapeutic response of melanoma to BRAF, Mitogen-Activated Protein Kinase Kinase 1 (MEK), and PI3K inhibitors in the presence of the PIK3CA H1047R mutation. Our data strongly support the notion that the crosstalk between the MAPK and PI3K-Akt pathways is one of the main mechanisms associated with melanoma development and progression and that the combination of MAPK and PI3K inhibitors may sensitize melanoma cells to therapy.

8.
Mol Med Rep ; 25(4)2022 04.
Article in English | MEDLINE | ID: mdl-35191519

ABSTRACT

Inflammation is a protective response of the body to various injuries, which is strictly regulated by a variety of factors, including immune cells and soluble mediators. However, dysfunction of this defensive mechanism often results in inflammation­driven diseases, such as deep vein thrombosis (DVT). The complex relationship between inflammatory cell activity and DVT has not been fully elucidated. The present study aimed to investigate the role of interleukin­6 (IL6) signaling transduction in DVT. To this aim, the expression levels of transmembrane isoforms of the IL6 receptor (IL6R) and the glycoprotein 130 responsible for the IL6 cis­signaling were evaluated in the peripheral blood mononuclear cells of patients with DVT and of healthy controls. The results indicated that leukocytes from patients with DVT exhibited overexpression of both IL6R and gp130 membrane isoforms and that these were strongly associated with the occurrence of DVT. Overall, the present findings indicated that IL6 cis­signaling may have a direct involvement in the leukocyte activation in DVT and may serve as a predictive biomarker of DVT development.


Subject(s)
Interleukin-6 , Venous Thrombosis , Humans , Interleukin-6/metabolism , Leukocytes/metabolism , Leukocytes, Mononuclear/metabolism , Signal Transduction , Venous Thrombosis/metabolism
9.
Adv Biol Regul ; 83: 100840, 2022 01.
Article in English | MEDLINE | ID: mdl-34866036

ABSTRACT

Approaches to improve pancreatic cancer therapy are essential as this disease has a very bleak outcome. Approximately 80% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). A key regulatory gene frequently mutated (∼75%) in PDAC is the TP53 tumor suppressor gene which controls the transcription of multiple genes involved in cell cycle progression, apoptosis, cancer progression and other growth regulatory processes. The mouse double minute 2 homolog (MDM2) gene product is a nuclear-localized E3 ubiquitin ligase and negatively regulates the TP53 protein which results in its proteasomal degradation. Various MDM2 inhibitors have been isolated and examined in clinical trials, especially in patients with hematological malignancies. Nutlin-3a is one of the first MDM2 inhibitors isolated. Berberine (BBR) is a natural product found in many fruits and berries and used in traditional medicine for centuries. It has many biological effects, and some are anti-proliferative in nature. BBR may activate the expression of TP53 and inhibit cell cycle progression as well as other events important in cell growth. To understand more about the potential of compounds like BBR and chemical modified BBRs (NAX compounds) to sensitize PDAC cells to MDM2 inhibitors, we introduced either WT-TP53 or the pLXSN empty vector control into two PDAC cell lines, one lacking expression of TP53 (PANC-28) and one with gain-of-function mutant TP53 on both alleles (MIA-PaCa-2). Our results indicate that nutlin-3a was able to increase the sensitivity to BBR and certain NAX compounds. The effects of nutlin-3a were usually more substantial in those cells containing an introduced WT TP53 gene. These results highlight the importance of knowledge of the type of TP53 mutation that is present in cancer patients before the administration of drugs which function by stabilization of the TP53 protein.


Subject(s)
Berberine , Pancreatic Neoplasms , Apoptosis , Berberine/pharmacology , Berberine/therapeutic use , Cell Line, Tumor , Humans , Imidazoles , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Piperazines , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
11.
Int J Mol Sci ; 22(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34576335

ABSTRACT

IL-6 pathway is abnormally hyperactivated in several cancers triggering tumor cell growth and immune system inhibition. Along with genomic mutation, the IL6 pathway gene expression can be affected by DNA methylation, microRNAs, and post-translational modifications. Computational analysis was performed on the Cancer Genome Atlas (TCGA) datasets to explore the role of IL6, IL6R, IL6ST, and IL6R transmembrane isoform expression and their epigenetic regulation in different cancer types. IL6 was significantly modulated in 70% of tumor types, revealing either up- or down-regulation in an approximately equal number of tumors. Furthermore, IL6R and IL6ST were downregulated in more than 10 tumors. Interestingly, the correlation analysis demonstrated that only the IL6R expression was negatively affected by the DNA methylation within the promoter region in most tumors. Meanwhile, only the IL6ST expression was extensively modulated by miRNAs including miR-182-5p, which also directly targeted all three genes. In addition, IL6 upregulated miR-181a-3p, mirR-214-3p, miR-18a-5p, and miR-938, which in turn inhibited the expression of IL6 receptors. Finally, the patients' survival rate was significantly affected by analyzed targets in some tumors. Our results suggest the relevance of epigenetic regulation of IL6 signaling and pave the way for further studies to validate these findings and to assess the prognostic and therapeutic predictive value of these epigenetic markers on the clinical outcome and survival of cancer patients.


Subject(s)
Epigenesis, Genetic/genetics , Interleukin-6/metabolism , MicroRNAs/metabolism , DNA Methylation/genetics , DNA Methylation/physiology , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , Inflammation/genetics , Inflammation/metabolism
12.
Int J Mol Sci ; 22(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34445183

ABSTRACT

Colorectal cancer (CRC) is characterized by genetic heterogeneity and is often diagnosed at an advanced stage. Therefore, there is a need to identify novel predictive markers. Yin Yang 1 (YY1) is a transcription factor playing a dual role in cancer. The present study aimed to investigate whether YY1 expression levels influence CRC cell response to therapy and to identify the transcriptional targets involved. The diagnostic and prognostic values of YY1 and the identified factor(s) in CRC patients were also explored. Silencing of YY1 increased the resistance to 5-Fluorouracil-induced cytotoxicity in two out of four CRC cells with different genotypes. BCL2L15/Bfk pro-apoptotic factor was found selectively expressed in the responder CRC cells and downregulated upon YY1 knockdown. CRC dataset analyses corroborated a tumor-suppressive role for both YY1 and BCL2L15 whose expressions were inversely correlated with aggressiveness. CRC single-cell sequencing dataset analyses demonstrated higher co-expression levels of both YY1 and BCL2L15 within defined tumor cell clusters. Finally, elevated levels of YY1 and BCL2L15 in CRC patients were associated with larger relapse-free survival. Given their observed anti-cancer role, we propose YY1 and BCL2L15 as candidate diagnostic and prognostic CRC biomarkers.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm , Fluorouracil/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , YY1 Transcription Factor/genetics , Cell Line, Tumor , Colorectal Neoplasms/genetics , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans
13.
Cells ; 10(4)2021 04 06.
Article in English | MEDLINE | ID: mdl-33917370

ABSTRACT

Glycogen synthase kinase-3 (GSK-3) is a regulator of signaling pathways. KRas is frequently mutated in pancreatic cancers. The growth of certain pancreatic cancers is KRas-dependent and can be suppressed by GSK-3 inhibitors, documenting a link between KRas and GSK-3. To further elucidate the roles of GSK-3ß in drug-resistance, we transfected KRas-dependent MIA-PaCa-2 pancreatic cells with wild-type (WT) and kinase-dead (KD) forms of GSK-3ß. Transfection of MIA-PaCa-2 cells with WT-GSK-3ß increased their resistance to various chemotherapeutic drugs and certain small molecule inhibitors. Transfection of cells with KD-GSK-3ß often increased therapeutic sensitivity. An exception was observed with cells transfected with WT-GSK-3ß and sensitivity to the BCL2/BCLXL ABT737 inhibitor. WT-GSK-3ß reduced glycolytic capacity of the cells but did not affect the basal glycolysis and mitochondrial respiration. KD-GSK-3ß decreased both basal glycolysis and glycolytic capacity and reduced mitochondrial respiration in MIA-PaCa-2 cells. As a comparison, the effects of GSK-3 on MCF-7 breast cancer cells, which have mutant PIK3CA, were examined. KD-GSK-3ß increased the resistance of MCF-7 cells to chemotherapeutic drugs and certain signal transduction inhibitors. Thus, altering the levels of GSK-3ß can have dramatic effects on sensitivity to drugs and signal transduction inhibitors which may be influenced by the background of the tumor.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Dietary Supplements , Glycogen Synthase Kinase 3 beta/metabolism , Molecular Targeted Therapy , Pancreatic Neoplasms/drug therapy , Adenocarcinoma/drug therapy , Adenocarcinoma/enzymology , Adenocarcinoma/pathology , Adenylate Kinase/metabolism , Antineoplastic Agents/pharmacology , Berberine/pharmacology , Berberine/therapeutic use , Biphenyl Compounds/pharmacology , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Diabetes Mellitus/drug therapy , Disease Progression , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Female , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Glycolysis/drug effects , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Malaria/drug therapy , Metformin/pharmacology , Metformin/therapeutic use , Neoplasm Metastasis , Nitrophenols/pharmacology , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/pathology , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/drug effects , Sulfonamides/pharmacology , Thiadiazoles/pharmacology , Thiadiazoles/therapeutic use , Tumor Stem Cell Assay , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/metabolism , Gemcitabine
14.
Adv Biol Regul ; 79: 100780, 2021 01.
Article in English | MEDLINE | ID: mdl-33451973

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic malignancy. Approximately 85% of pancreatic cancers are classified as PDACs. The survival of PDAC patients is very poor and only 5-10% of patients survive 5 years after diagnosis. Mutations at the KRAS and TP53 gene are frequently observed in PDAC patients. The PANC-28 cell line lacks wild-type (WT) TP53. In the following study, we have investigated the effects of restoration of WT TP53 activity on the sensitivity of PANC-28 pancreatic cancer cells to various drugs which are used to treat PDAC patients as well as other cancer patients. In addition, we have examined the effects of signal transduction inhibitors which target critical pathways frequently deregulated in cancer. The effects of the anti-diabetes drug metformin and the anti-malarial drug chloroquine were also examined as these drugs may be repurposed to treat other diseases. Finally, the effects of certain nutraceuticals which are used to treat various ailments were also examined. Introduction of WT-TP53 activity in PANC-28 PDAC cells, can increase their sensitivity to various drugs. Attempts are being made clinically to increase TP53 activity in various cancer types which will often inhibit cell growth by multiple mechanisms.


Subject(s)
Antineoplastic Agents/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Cell Proliferation/drug effects , Dietary Supplements/analysis , Female , Humans , Male , Mutation , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction/drug effects , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
15.
Antioxid Redox Signal ; 34(5): 383-401, 2021 02 10.
Article in English | MEDLINE | ID: mdl-32027171

ABSTRACT

Significance: Hematological malignancies represent the fourth most diagnosed cancer. Relapse and acquired resistance to anticancer therapy constitute two actual issues that need to be overcome. Nitric oxide (NO) plays a pivotal role in regulating cancer progression. At present, many studies are attempting to uncover the potentials of modulating NO levels to improve the efficacy of currently available treatments against lymphoma, leukemia, and myeloma. Recent Advances: It is becoming progressively clear that NO modulation may help hematological cancer management, either by targeting directly tumor cells or by driving the immune system to eliminate cancer cells. Critical Issues: NO is a dual molecule that can have a tumor-protecting or stimulating effect, depending on its local concentration. Moreover, NO is able to target a wide range of molecules involved in both cancer genesis and evolution. In this review, an overview of the recent findings regarding the pivotal role played by NO and nitric oxide synthase in cancer progression and anticancer therapy is presented, with particular focus on hematological malignancies. Future Directions: It is critical to establish the cancer-specific function of NO and critically drive its modulation to improve cancer management toward a personalized approach. This has a special importance in hematological tumors, where the urgency of finding eradicative therapies is constant. Antioxid. Redox Signal. 34, 383-401.


Subject(s)
Hematologic Neoplasms/etiology , Hematologic Neoplasms/metabolism , Nitric Oxide/metabolism , Animals , Biomarkers , Disease Management , Disease Progression , Disease Susceptibility , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/therapy , Humans , Oxidation-Reduction
16.
Dev Comp Immunol ; 116: 103933, 2021 03.
Article in English | MEDLINE | ID: mdl-33245981

ABSTRACT

Matrix metalloproteases are known to represent an early step in the evolution of the immune system. Similarly, neutrophil gelatinase-associated lipocalin is known to be a key effector in immune response. MMP-9 interacts with NGAL, but their interaction mechanisms remain unclear. Functional interaction between proteins is ensured by coevolution. Protein coevolution was inferred by calculating the linear correlation coefficients between inter-protein distance matrices using MirrorTree. Among examined mammal species, we found a robust signal of MMP-9/NGAL coevolution exclusively within Primates (R = 0.96, p < 1e-06). Owing to the high conservation of these proteins among Mammals, we chose to utilize a recent version of Blocks in Sequences (BIS2) algorithm implemented in BIS2Analyzer webserver. Coevolution clusters between the two proteins were identified in MMP-9 fibronectin and hemopexin domains. Our results suggest that MMP-9/NGAL interaction is a recent evolutionary acquisition in Primates. Furthermore, MMP-9 hemopexin domain would represent a promising target for drug design against these molecules.


Subject(s)
Lipocalin-2/genetics , Matrix Metalloproteinase 9/genetics , Primates/genetics , Animals , Biological Coevolution , Humans , Mammals/classification , Mammals/genetics , Phylogeny , Primates/classification
17.
Cancers (Basel) ; 12(12)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291603

ABSTRACT

Malignancies heterogeneity represents a critical issue in cancer care, as it often causes therapy resistance and tumor relapse. Organoids are three-dimensional (3D) miniaturized representations of selected tissues within a dish. Lately, organoid technology has been applied to oncology with growing success and Patients Derived Tumor Organoids (PDTOs) constitute a novel available tool which fastens cancer research. PDTOs are in vitro models of cancer, and importantly, they can be used as a platform to validate the efficacy of anti-cancer drugs. For that reason, they are currently utilized in clinics as emerging in vitro screening technology to tailor the therapy around the patient, with the final goal of beating cancer resistance and recurrence. In this sense, PDTOs biobanking is widely used and PDTO-libraries are helping the discovery of novel anticancer molecules. Moreover, they represent a good model to screen and validate compounds employed for other pathologies as off-label drugs potentially repurposed for the treatment of tumors. This will open up novel avenues of care thus ameliorating the life expectancy of cancer patients. This review discusses the present advancements in organoids research applied to oncology, with special attention to PDTOs and their translational potential, especially for anti-cancer drug testing, including off-label molecules.

18.
Exp Ther Med ; 20(6): 237, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33193842

ABSTRACT

Multiple factors play a pathophysiologic role for the venous thromboembolism (VTE) as a multi-factorial disease. Inflammation might play a peculiar role in shifting towards a pro-thrombotic state. Anticoagulant drugs are the first cure line for VTE. The low-molecular-weight heparins (LMWH) show anti-coagulant capability as well as reducing levels of inflammatory factors, including interleukin (IL)-6. The direct oral anticoagulants (DOACs) have shown efficacy in threating VTE, additionally to the anti-activated factor X these drugs seem able to reduce the abnormal release of pro-inflammatory agents. The present study evaluated the capability of DOACs in reducing plasma level of IL-6 in patients suffered from deep vein thrombosis (DVT) of the lower limbs. Our results showed reduced IL-6 expression levels in the peripheral lymphocytes of DVT compared to controls (fold-change, 2.8; P<0.05). We postulate that lowered IL-6 expression in the lymphocytes of DVT patients may mediate the anti-inflammatory action of DOACs. The present study is the first evidence concerning the anti-inflammatory properties of DOACs in specific setting of VTE patients such as DVT.

19.
Biology (Basel) ; 9(11)2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33172167

ABSTRACT

Despite the availability of screening programs, oral cancer deaths are increasing due to the lack of diagnostic biomarkers leading to late diagnosis and a poor prognosis. Therefore, there is an urgent need to discover novel effective biomarkers for this tumor. On these bases, the aim of this study was to validate the diagnostic potential of microRNAs (miRNAs) through the analysis of liquid biopsy samples obtained from ten oral cancer patients and ten healthy controls. The expression of four selected miRNAs was evaluated by using droplet digital PCR (ddPCR) in a pilot cohort of ten oral cancer patients and ten healthy donors. Bioinformatics analyses were performed to assess the functional role of these miRNAs. The expression levels of the predicted down-regulated hsa-miR-133a-3p and hsa-miR-375-3p were significantly reduced in oral cancer patients compared to normal individuals while no significant results were obtained for the up-regulated hsa-miR-503-5p and hsa-miR-196a-5p. ROC analysis confirmed the high sensitivity and specificity of hsa-miR-375-3p and hsa-miR-133a-3p. Therefore, both miRNAs are significantly down-regulated in cancer patients and can be used as biomarkers for the early diagnosis of oral cancer. The analysis of circulating miRNAs in a larger series of patients is mandatory to confirm the results obtained in this pilot study.

20.
Biomed Rep ; 13(6): 60, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33149905

ABSTRACT

Fluoro-edenite (FE), asbestiform fiber found in Biancavilla (Sicily, Italy), presents various characteristics similar to the asbestos group, in particular two fibrous phases tremolite and actinolite. Indeed, epidemiological studies have shown that FE fibers have similar effects to those of asbestos fibers. Such studies have reported a high incidence of malignant mesothelioma (MM), an aggressive neoplasm of the serosal membranes lining the pleural cavity, in individuals residing there due to FE exposure in Biancavilla related to environmental contamination. Evidence has led to the classification of FE as a Group 1 human carcinogen by the International Agency for Research on Cancer (IARC). The aim of this systematic review is to compare the results achieved in in vitro, in vivo and ex vivo experimental studies involving FE in order to update the current knowledge on the pathogenesis and molecular mechanisms responsible for FE-mediated MM development as well as the availability of effective biomarkers for MM prevention and diagnosis. This review is focused on the pathophysiological mechanisms mediated by inflammation induced by FE fiber exposure and which are responsible for MM development. This review also discusses the discovery of new diagnostic and prognostic biomarkers for the management of this pathology. It is known that the risk of cancer development increases with chronic inflammation, arising from enhanced reactive oxygen species (ROS) and NO• production stimulated by the body to remove exogenous agents, causing DNA damage and enhanced signal transduction that may lead to activation of oncogenes. Studies concerning MM biomarker discovery indicate that several biomarkers have been proposed for MM, but mesothelin is the only Food and Drug Administration (FDA)-approved biomarker for MM, with limitations. In recent studies, in silico analysis to identify selected miRNAs highly deregulated in cancer samples when compared with normal control have been developed. This in silico approach could represent an effort in the field of biomarker discovery for MM.

SELECTION OF CITATIONS
SEARCH DETAIL
...