Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 325(3): R299-R307, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37458379

ABSTRACT

Hypertension augments while exercise training corrects the increased vesicle trafficking (transcytosis) across the blood-brain barrier (BBB) within preautonomic areas and the autonomic imbalance. There is no information on a possible mechanism(s) conditioning these effects. Knowing that Mfsd2a is the major transporter of docosahexaenoic acid (DHA) and that Mfsd2a knockout mice exhibited leaky BBB, we sought to identify its possible involvement in hypertension- and exercise-induced transcytosis across the BBB. Spontaneously hypertensive rats (SHR) and Wistar rats were submitted to treadmill training (T) or kept sedentary (S) for 4 wk. Resting hemodynamic/autonomic parameters were recorded in conscious chronically cannulated rats. BBB permeability within the hypothalamic paraventricular nucleus (PVN) was evaluated in anesthetized rats. Brains were harvested for Mfsd2a and caveolin-1 (an essential protein for vesicle formation) expression. SHR-S versus Wistar-S exhibited elevated arterial pressure (AP) and heart rate (HR), increased vasomotor sympathetic activity, reduced cardiac parasympathetic activity, greater pressure variability, reduced HR variability, and depressed baroreflex control. SHR-S also showed increased BBB permeability, reduced Mfsd2a, and increased caveolin-1 expression. SHR-T versus SHR-S exhibited increased Mfsd2a density, reduced caveolin-1 protein expression, and normalized PVN BBB permeability, which were accompanied by resting bradycardia, partial AP drop, reduced sympathetic and normalized cardiac parasympathetic activity, increased HR variability, and reduced pressure variability. No changes were observed in Wistar-T versus Wistar-S. Training is an efficient tool to rescue Mfsd2a expression, which by transporting DHA into the endothelial cell reduces caveolin-1 availability and vesicles' formation. Exercise-induced Mfsd2a normalization is an important mechanism to correct both BBB function and autonomic control in hypertensive subjects.


Subject(s)
Hypertension , Symporters , Animals , Rats , Blood-Brain Barrier/metabolism , Capillaries/metabolism , Caveolin 1/genetics , Caveolin 1/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Rats, Inbred SHR , Rats, Wistar , Symporters/metabolism
2.
Front Physiol ; 14: 1069485, 2023.
Article in English | MEDLINE | ID: mdl-36909225

ABSTRACT

Introduction: Chronic hypertension is accompanied by either blood-brain barrier (BBB) leakage and autonomic dysfunction. There is no consensus on the mechanism determining increased BBB permeability within autonomic areas. While some reports suggested tight junction's breakdown, others indicated the involvement of transcytosis rather than paracellular transport changes. Interestingly, exercise training was able to restore both BBB permeability and autonomic control of the circulation. We sought now to clarify the mechanism(s) governing hypertension- and exercise-induced BBB permeability. Methods: Spontaneously hypertensive rats (SHR) and normotensive controls submitted to 4-week aerobic training (T) or sedentary protocol (S) were chronically cannulated for baseline hemodynamic and autonomic recordings and evaluation of BBB permeability. Brains were harvested for measurement of BBB function (FITC-10 kDa leakage), ultrastructural analysis of BBB constituents (transmission electron microscopy) and caveolin-1 expression (immunofluorescence). Results: In SHR-S the increased pressure, augmented sympathetic vasomotor activity, higher sympathetic and lower parasympathetic modulation of the heart and the reduced baroreflex sensitivity were accompanied by robust FITC-10kDa leakage, large increase in transcytotic vesicles number/capillary, but no change in tight junctions' density within the paraventricular nucleus of the hypothalamus, the nucleus of the solitary tract and the rostral ventrolateral medulla. SHR-T exhibited restored BBB permeability and normalized vesicles counting/capillary simultaneously with a normal autonomic modulation of heart and vessels, resting bradycardia and partial pressure reduction. Caveolin-1 expression ratified the counting of transcellular, not other cytoplasmatic vesicles. Additionally, T caused in both groups significant increases in tight junctions' extension/capillary border. Discussion: Data indicate that transcytosis, not the paracellular transport, is the primary mechanism underlying both hypertension- and exercise-induced BBB permeability changes within autonomic areas. The reduced BBB permeability contributes to normalize the autonomic control of the circulation, which suppresses pressure variability and reduces the occurrence of end-organ damage in the trained SHR. Data also disclose that hypertension does not change but exercise training strengthens the resistance of the paracellular pathway in both strains.

SELECTION OF CITATIONS
SEARCH DETAIL
...