Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270517

ABSTRACT

Sensory signals are processed by the cerebellum to coordinate movements. Numerous cerebellar functions are thought to require the maintenance of a sensory representation that extends beyond the input signal. Granule cells receive sensory input, but they do not prolong the signal and are thus unlikely to maintain a sensory representation for much longer than the inputs themselves. Unipolar brush cells (UBCs) are excitatory interneurons that project to granule cells and transform sensory input into prolonged increases or decreases in firing, depending on their ON or OFF UBC subtype. Further extension and diversification of the input signal could be produced by UBCs that project to one another, but whether this circuitry exists is unclear. Here we test whether UBCs innervate one another and explore how these small networks of UBCs could transform spiking patterns. We characterized two transgenic mouse lines electrophysiologically and immunohistochemically to confirm that they label ON and OFF UBC subtypes and crossed them together, revealing that ON and OFF UBCs innervate one another. A Brainbow reporter was used to label UBCs of the same ON or OFF subtype with different fluorescent proteins, which showed that UBCs innervate their own subtypes as well. Computational models predict that these feed-forward networks of UBCs extend the length of bursts or pauses and introduce delays-transformations that may be necessary for cerebellar functions from modulation of eye movements to adaptive learning across time scales.


Subject(s)
Cerebellum , Coloring Agents , Animals , Mice , Eye Movements , Interneurons , Learning , Mice, Transgenic
2.
bioRxiv ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37090638

ABSTRACT

Sensory signals are processed by the cerebellum to coordinate movements. Numerous cerebellar functions are thought to require the maintenance of a sensory representation that extends beyond the input signal. Granule cells receive sensory input, but they do not prolong the signal and are thus unlikely to maintain a sensory representation for much longer than the inputs themselves. Unipolar brush cells (UBCs) are excitatory interneurons that project to granule cells and transform sensory input into prolonged increases or decreases in firing, depending on their ON or OFF UBC subtype. Further extension and diversification of the input signal could be produced by UBCs that project to one another, but whether this circuitry exists is unclear. Here we test whether UBCs innervate one another and explore how these small networks of UBCs could transform spiking patterns. We characterized two transgenic mouse lines electrophysiologically and immunohistochemically to confirm that they label ON and OFF UBC subtypes and crossed them together, revealing that ON and OFF UBCs innervate one another. A Brainbow reporter was used to label UBCs of the same ON or OFF subtype with different fluorescent proteins, which showed that UBCs innervate their own subtypes as well. Computational models predict that these feed-forward networks of UBCs extend the length of bursts or pauses and introduce delays-transformations that may be necessary for cerebellar functions from modulation of eye movements to adaptive learning across time scales.

3.
Elife ; 102021 08 31.
Article in English | MEDLINE | ID: mdl-34464258

ABSTRACT

Monocular deprivation early in development causes amblyopia, a severe visual impairment. Prognosis is poor if therapy is initiated after an early critical period. However, clinical observations have shown that recovery from amblyopia can occur later in life when the non-deprived (fellow) eye is removed. The traditional interpretation of this finding is that vision is improved simply by the elimination of interocular suppression in primary visual cortex, revealing responses to previously subthreshold input. However, an alternative explanation is that silencing activity in the fellow eye establishes conditions in visual cortex that enable the weak connections from the amblyopic eye to gain strength, in which case the recovery would persist even if vision is restored in the fellow eye. Consistent with this idea, we show here in cats and mice that temporary inactivation of the fellow eye is sufficient to promote a full and enduring recovery from amblyopia at ages when conventional treatments fail. Thus, connections serving the amblyopic eye are capable of substantial plasticity beyond the critical period, and this potential is unleashed by reversibly silencing the fellow eye.


Subject(s)
Amblyopia/veterinary , Vision, Binocular/physiology , Animals , Cats , Female , Male , Mice , Mice, Inbred C57BL , Sensory Deprivation , Visual Acuity
SELECTION OF CITATIONS
SEARCH DETAIL
...