Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10889, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740824

ABSTRACT

A structured approach to managing reactive power is imperative within the context of power systems. Among the restructuring initiatives in the electrical sector, power systems have undergone delineation into three principal categories: generation, transmission, and distribution entities, each of which is overseen by an independent system operator. Notably, active power emerges as the predominant commodity transacted within the electrical market, with the autonomous grid operator assuming the responsibility of ensuring conducive conditions for the execution of energy contracts across the transmission infrastructure. Ancillary services, comprising essential frameworks for energy generation and delivery to end-users, encompass reactive power services pivotal in the regulation of bus voltage. Of particular significance among the array of ancillary services requisite in a competitive market milieu is the provision of adequate reactive power to uphold grid safety and voltage stability. A salient impediment to the realization of energy contracts lies in the inadequacy of reactive power within the grid, which poses potential risks to its operational safety and voltage equilibrium. The optimal allocation of the reactive power load is predicated upon presumptions of consistent outcomes within the active power market. Under this conceptual framework, generators are afforded continual compensation for the provision of reactive power indispensable for sustaining their active energy production endeavors.

2.
Chemosphere ; 339: 139624, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37516320

ABSTRACT

In this article, in order to achieve a sustainable environment, the optimization of a GT equipped with intercooling of the compression process is discussed. To limit the exergy destruction in intercooling cooling process and also to reduce the heat dissipation in the environment, an ORC system is applied for heat recovery and more power generation. Decision variables include CPR, first stage CPR, TIT, intercooler effectiveness, HRVG pressure, and superheating degree. During a parametric study, the effect of decision variables on operating factors including exergy efficiency, TCR, and the normalized emission rate of environmental pollutants are investigated. Finally, by performing bi-objective optimization and considering exergy efficiency and TCR as OFs, optimal performance conditions are determined. Finally, it is observed that in optimum conditions, exergy efficiency is 33% and TCR is 0.9 $/s.


Subject(s)
Body Temperature Regulation , Environmental Pollutants , Cold Temperature , Hot Temperature , Receptors, Antigen, T-Cell
SELECTION OF CITATIONS
SEARCH DETAIL
...