Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nat Genet ; 56(1): 112-123, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177344

ABSTRACT

The Farm Animal Genotype-Tissue Expression (FarmGTEx) project has been established to develop a public resource of genetic regulatory variants in livestock, which is essential for linking genetic polymorphisms to variation in phenotypes, helping fundamental biological discovery and exploitation in animal breeding and human biomedicine. Here we show results from the pilot phase of PigGTEx by processing 5,457 RNA-sequencing and 1,602 whole-genome sequencing samples passing quality control from pigs. We build a pig genotype imputation panel and associate millions of genetic variants with five types of transcriptomic phenotypes in 34 tissues. We evaluate tissue specificity of regulatory effects and elucidate molecular mechanisms of their action using multi-omics data. Leveraging this resource, we decipher regulatory mechanisms underlying 207 pig complex phenotypes and demonstrate the similarity of pigs to humans in gene expression and the genetic regulation behind complex phenotypes, supporting the importance of pigs as a human biomedical model.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation , Swine/genetics , Animals , Humans , Genotype , Phenotype , Sequence Analysis, RNA
2.
Commun Biol ; 6(1): 523, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37188768

ABSTRACT

There is increasing evidence that the complexity of the retinal vasculature measured as fractal dimension, Df, might offer earlier insights into the progression of coronary artery disease (CAD) before traditional biomarkers can be detected. This association could be partly explained by a common genetic basis; however, the genetic component of Df is poorly understood. We present a genome-wide association study (GWAS) of 38,000 individuals with white British ancestry from the UK Biobank aimed to comprehensively study the genetic component of Df and analyse its relationship with CAD. We replicated 5 Df loci and found 4 additional loci with suggestive significance (P < 1e-05) to contribute to Df variation, which previously were reported in retinal tortuosity and complexity, hypertension, and CAD studies. Significant negative genetic correlation estimates support the inverse relationship between Df and CAD, and between Df and myocardial infarction (MI), one of CAD's fatal outcomes. Fine-mapping of Df loci revealed Notch signalling regulatory variants supporting a shared mechanism with MI outcomes. We developed a predictive model for MI incident cases, recorded over a 10-year period following clinical and ophthalmic evaluation, combining clinical information, Df, and a CAD polygenic risk score. Internal cross-validation demonstrated a considerable improvement in the area under the curve (AUC) of our predictive model (AUC = 0.770 ± 0.001) when comparing with an established risk model, SCORE, (AUC = 0.741 ± 0.002) and extensions thereof leveraging the PRS (AUC = 0.728 ± 0.001). This evidences that Df provides risk information beyond demographic, lifestyle, and genetic risk factors. Our findings shed new light on the genetic basis of Df, unveiling a common control with MI, and highlighting the benefits of its application in individualised MI risk prediction.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Humans , Genome-Wide Association Study , Genetic Predisposition to Disease , Myocardial Infarction/genetics , Coronary Artery Disease/genetics , Risk Factors
4.
Genome Biol ; 23(1): 176, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35996157

ABSTRACT

BACKGROUND: Cross-species comparison of transcriptomes is important for elucidating evolutionary molecular mechanisms underpinning phenotypic variation between and within species, yet to date it has been essentially limited to model organisms with relatively small sample sizes. RESULTS: Here, we systematically analyze and compare 10,830 and 4866 publicly available RNA-seq samples in humans and cattle, respectively, representing 20 common tissues. Focusing on 17,315 orthologous genes, we demonstrate that mean/median gene expression, inter-individual variation of expression, expression quantitative trait loci, and gene co-expression networks are generally conserved between humans and cattle. By examining large-scale genome-wide association studies for 46 human traits (average n = 327,973) and 45 cattle traits (average n = 24,635), we reveal that the heritability of complex traits in both species is significantly more enriched in transcriptionally conserved than diverged genes across tissues. CONCLUSIONS: In summary, our study provides a comprehensive comparison of transcriptomes between humans and cattle, which might help decipher the genetic and evolutionary basis of complex traits in both species.


Subject(s)
Genome-Wide Association Study , Transcriptome , Animals , Cattle/genetics , Humans , Multifactorial Inheritance , Phenotype , Quantitative Trait Loci
5.
Nat Genet ; 54(9): 1438-1447, 2022 09.
Article in English | MEDLINE | ID: mdl-35953587

ABSTRACT

Characterization of genetic regulatory variants acting on livestock gene expression is essential for interpreting the molecular mechanisms underlying traits of economic value and for increasing the rate of genetic gain through artificial selection. Here we build a Cattle Genotype-Tissue Expression atlas (CattleGTEx) as part of the pilot phase of the Farm animal GTEx (FarmGTEx) project for the research community based on 7,180 publicly available RNA-sequencing (RNA-seq) samples. We describe the transcriptomic landscape of more than 100 tissues/cell types and report hundreds of thousands of genetic associations with gene expression and alternative splicing for 23 distinct tissues. We evaluate the tissue-sharing patterns of these genetic regulatory effects, and functionally annotate them using multiomics data. Finally, we link gene expression in different tissues to 43 economically important traits using both transcriptome-wide association and colocalization analyses to decipher the molecular regulatory mechanisms underpinning such agronomic traits in cattle.


Subject(s)
Quantitative Trait Loci , Transcriptome , Animals , Cattle/genetics , Gene Expression Regulation , Phenotype , Quantitative Trait Loci/genetics , Sequence Analysis, RNA , Transcriptome/genetics
6.
Nat Genet ; 53(9): 1283-1289, 2021 09.
Article in English | MEDLINE | ID: mdl-34493869

ABSTRACT

Males and females present differences in complex traits and in the risk of a wide array of diseases. Genotype by sex (GxS) interactions are thought to account for some of these differences. However, the extent and basis of GxS are poorly understood. In the present study, we provide insights into both the scope and the mechanism of GxS across the genome of about 450,000 individuals of European ancestry and 530 complex traits in the UK Biobank. We found small yet widespread differences in genetic architecture across traits. We also found that, in some cases, sex-agnostic analyses may be missing trait-associated loci and looked into possible improvements in the prediction of high-level phenotypes. Finally, we studied the potential functional role of the differences observed through sex-biased gene expression and gene-level analyses. Our results suggest the need to consider sex-aware analyses for future studies to shed light onto possible sex-specific molecular mechanisms.


Subject(s)
Quantitative Trait Loci/genetics , Quantitative Trait, Heritable , Sex Characteristics , Biological Specimen Banks , Female , Gene Expression Regulation/genetics , Genotype , Humans , Male , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Sex Factors , United Kingdom
7.
Nat Hum Behav ; 5(3): 399-406, 2021 03.
Article in English | MEDLINE | ID: mdl-33318663

ABSTRACT

Indirect genetic effects, the effects of the genotype of one individual on the phenotype of other individuals, are environmental factors associated with human disease and complex trait variation that could help to expand our understanding of the environment linked to complex traits. Here, we study indirect genetic effects in 80,889 human couples of European ancestry for 105 complex traits. Using a linear mixed model approach, we estimate partner indirect heritability and find evidence of partner heritability on ~50% of the analysed traits. Follow-up analysis suggests that in at least ~25% of these traits, the partner heritability is consistent with the existence of indirect genetic effects including a wide variety of traits such as dietary traits, mental health and disease. This shows that the environment linked to complex traits is partially explained by the genotype of other individuals and motivates the need to find new ways of studying the environment.


Subject(s)
Gene-Environment Interaction , Genotype , Health Status , Inheritance Patterns , Life Style , Phenotype , Adult , Female , Humans , Male , Sex Factors , Spouses , White People
8.
PLoS Genet ; 16(7): e1008785, 2020 07.
Article in English | MEDLINE | ID: mdl-32628676

ABSTRACT

To efficiently transform genetic associations into drug targets requires evidence that a particular gene, and its encoded protein, contribute causally to a disease. To achieve this, we employ a three-step proteome-by-phenome Mendelian Randomization (MR) approach. In step one, 154 protein quantitative trait loci (pQTLs) were identified and independently replicated. From these pQTLs, 64 replicated locally-acting variants were used as instrumental variables for proteome-by-phenome MR across 846 traits (step two). When its assumptions are met, proteome-by-phenome MR, is equivalent to simultaneously running many randomized controlled trials. Step 2 yielded 38 proteins that significantly predicted variation in traits and diseases in 509 instances. Step 3 revealed that amongst the 271 instances from GeneAtlas (UK Biobank), 77 showed little evidence of pleiotropy (HEIDI), and 92 evidence of colocalization (eCAVIAR). Results were wide ranging: including, for example, new evidence for a causal role of tyrosine-protein phosphatase non-receptor type substrate 1 (SHPS1; SIRPA) in schizophrenia, and a new finding that intestinal fatty acid binding protein (FABP2) abundance contributes to the pathogenesis of cardiovascular disease. We also demonstrated confirmatory evidence for the causal role of four further proteins (FGF5, IL6R, LPL, LTA) in cardiovascular disease risk.


Subject(s)
Cardiovascular Diseases/genetics , Mendelian Randomization Analysis , Proteome/genetics , Schizophrenia/genetics , Antigens, Differentiation/genetics , Cardiovascular Diseases/pathology , Fatty Acid-Binding Proteins/genetics , Female , Fibroblast Growth Factor 5/genetics , Genetic Association Studies/methods , Humans , Lipoprotein Lipase/genetics , Lymphotoxin-alpha/genetics , Male , Quantitative Trait Loci , Receptors, Immunologic/genetics , Receptors, Interleukin-6/genetics , Schizophrenia/pathology
9.
Bioinformatics ; 36(16): 4525-4526, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32589697

ABSTRACT

MOTIVATION: Emerging phenomena in developmental biology and tissue engineering are the result of feedbacks between gene expression and cell biomechanics. In that context, in silico experiments are a powerful tool to understand fundamental mechanisms and to formulate and test hypotheses. RESULTS: Here, we present TiFoSi, a computational tool to simulate the cellular dynamics of planar epithelia. TiFoSi allows to model feedbacks between cellular mechanics and gene expression (either in a deterministic or a stochastic way), the interaction between different cell populations, the custom design of the cell cycle and cleavage properties, the protein number partitioning upon cell division, and the modeling of cell communication (juxtacrine and paracrine signaling). AVAILABILITY AND IMPLEMENTATION: http://tifosi.thesimbiosys.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology , Software , Biophysics , Cell Division , Computer Simulation , Epithelium , Feedback
10.
Genome Res ; 30(5): 790-801, 2020 05.
Article in English | MEDLINE | ID: mdl-32424068

ABSTRACT

By uniformly analyzing 723 RNA-seq data from 91 tissues and cell types, we built a comprehensive gene atlas and studied tissue specificity of genes in cattle. We demonstrated that tissue-specific genes significantly reflected the tissue-relevant biology, showing distinct promoter methylation and evolution patterns (e.g., brain-specific genes evolve slowest, whereas testis-specific genes evolve fastest). Through integrative analyses of those tissue-specific genes with large-scale genome-wide association studies, we detected relevant tissues/cell types and candidate genes for 45 economically important traits in cattle, including blood/immune system (e.g., CCDC88C) for male fertility, brain (e.g., TRIM46 and RAB6A) for milk production, and multiple growth-related tissues (e.g., FGF6 and CCND2) for body conformation. We validated these findings by using epigenomic data across major somatic tissues and sperm. Collectively, our findings provided novel insights into the genetic and biological mechanisms underlying complex traits in cattle, and our transcriptome atlas can serve as a primary source for biological interpretation, functional validation, studies of adaptive evolution, and genomic improvement in livestock.


Subject(s)
Cattle/genetics , Transcriptome , Animals , Cattle/growth & development , Cattle/physiology , DNA Methylation , Female , Genes , Milk , Organ Specificity , RNA-Seq , Reproduction
11.
J Am Heart Assoc ; 9(7): e014146, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32237974

ABSTRACT

Background Epistasis describes how gene-gene interactions affect phenotypes, and could have a profound impact on human diseases such as coronary artery disease (CAD). The goal of this study was to identify gene-gene interactions in CAD using an easily generalizable multi-stage approach. Methods and Results Our forward genetic approach consists of multiple steps that combine statistical and functional approaches, and analyze information from global gene expression profiling, functional interactions, and genetic interactions to robustly identify gene-gene interactions. Global gene expression profiling shows that knockdown of ANRIL (DQ485454) at 9p21.3 GWAS (genome-wide association studies) CAD locus upregulates TMEM100 and TMEM106B. Functional studies indicate that the increased monocyte adhesion to endothelial cells and transendothelial migration of monocytes, 2 critical processes in the initiation of CAD, by ANRIL knockdown are reversed by knockdown of TMEM106B, but not of TMEM100. Furthermore, the decreased monocyte adhesion to endothelial cells and transendothelial migration of monocytes induced by ANRIL overexpression was reversed by overexpressing TMEM106B. TMEM106B expression was upregulated by >2-fold in CAD coronary arteries. A significant association was found between variants in TMEM106B (but not in TMEM100) and CAD (P=1.9×10-8). Significant gene-gene interaction was detected between ANRIL variant rs2383207 and TMEM106B variant rs3807865 (P=0.009). A similar approach also identifies significant interaction between rs6903956 in ADTRP and rs17465637 in MIA3 (P=0.005). Conclusions We demonstrate 2 pairs of epistatic interactions between GWAS loci for CAD and offer important insights into the genetic architecture and molecular mechanisms for the pathogenesis of CAD. Our strategy has broad applicability to the identification of epistasis in other human diseases.


Subject(s)
Cardiovascular Diseases/genetics , Endothelial Cells/metabolism , Epistasis, Genetic , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/metabolism , Case-Control Studies , Cells, Cultured , Data Interpretation, Statistical , Gene Regulatory Networks , Genetic Predisposition to Disease , Genome-Wide Association Study , Heart Disease Risk Factors , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Middle Aged , Models, Statistical , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Phenotype , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Risk Assessment , Transcriptome
12.
Nat Commun ; 10(1): 2069, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31043600

ABSTRACT

In the original version of this Article, the legend in the upper panel of Figure 2 incorrectly read 'paternal imprinting' and should have read 'maternal imprinting'. This has been corrected in both the PDF and HTML versions of the Article.

13.
Nat Commun ; 10(1): 1383, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30918249

ABSTRACT

Parent-of-origin effects (POE) exist when there is differential expression of alleles inherited from the two parents. A genome-wide scan for POE on DNA methylation at 639,238 CpGs in 5,101 individuals identifies 733 independent methylation CpGs potentially influenced by POE at a false discovery rate ≤ 0.05 of which 331 had not previously been identified. Cis and trans methylation quantitative trait loci (mQTL) regulate methylation variation through POE at 54% (399/733) of the identified POE-influenced CpGs. The combined results provide strong evidence for previously unidentified POE-influenced CpGs at 171 independent loci. Methylation variation at 14 of the POE-influenced CpGs is associated with multiple metabolic traits. A phenome-wide association analysis using the POE mQTL SNPs identifies a previously unidentified imprinted locus associated with waist circumference. These results provide a high resolution population-level map for POE on DNA methylation sites, their local and distant regulators and potential consequences for complex traits.


Subject(s)
DNA Methylation/genetics , Gene Expression Regulation , Genomic Imprinting/genetics , Quantitative Trait Loci/genetics , Adult , CpG Islands , Female , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Scotland
14.
Heredity (Edinb) ; 123(2): 106-116, 2019 08.
Article in English | MEDLINE | ID: mdl-30723306

ABSTRACT

Phenotypic correlations among partners for traits such as longevity or late-onset disease have been found to be comparable to phenotypic correlations in first-degree relatives. How these correlations arise in late life is poorly understood. Here we introduce a novel paradigm to establish the presence of indirect assortment on factors correlated across generations, by examining correlations between parents of couples, i.e., in-laws. Using correlations in additive genetic values we further corroborate the presence of indirect assortment on heritable factors. Specifically, using couples from the UK Biobank cohort, we show that longevity and disease history of the parents of White British couples are correlated, with correlations of up to 0.09. The correlations in parental longevity are replicated in the FamiLinx cohort, a larger and geographically more diverse historical ancestry dataset spanning a broader time frame. These correlations in parental longevity significantly (pval < 0.0093 for all pairs of parents) exceed what would be expected due to variations in lifespan based on year and location of birth. For cardiovascular diseases, in particular hypertension, we find significant correlations (r = 0.028, pval = 0.005) in genetic values among partners, supporting a model where partners assort for risk factors to some extent genetically correlated with cardiovascular disease. Partitioning the relative importance of indirect assortative mating and shared common environment will require large, well-characterized longitudinal cohorts aimed at understanding phenotypic correlations among none-blood relatives. Identifying the factors that mediate indirect assortment on longevity and human disease risk will help to unravel factors affecting human disease and ultimately longevity.


Subject(s)
Longevity/genetics , Reproduction/genetics , Environment , Female , Humans , Male , Phenotype , White People/genetics
15.
Nat Commun ; 9(1): 5271, 2018 12 10.
Article in English | MEDLINE | ID: mdl-30531825

ABSTRACT

Natural hair colour within European populations is a complex genetic trait. Previous work has established that MC1R variants are the principal genetic cause of red hair colour, but with variable penetrance. Here, we have extensively mapped the genes responsible for hair colour in the white, British ancestry, participants in UK Biobank. MC1R only explains 73% of the SNP heritability for red hair in UK Biobank, and in fact most individuals with two MC1R variants have blonde or light brown hair. We identify other genes contributing to red hair, the combined effect of which accounts for ~90% of the SNP heritability. Blonde hair is associated with over 200 genetic variants and we find a continuum from black through dark and light brown to blonde and account for 73% of the SNP heritability of blonde hair. Many of the associated genes are involved in hair growth or texture, emphasising the cellular connections between keratinocytes and melanocytes in the determination of hair colour.


Subject(s)
Genetic Loci/genetics , Genome-Wide Association Study , Hair Color/genetics , Inheritance Patterns/genetics , Polymorphism, Single Nucleotide , Adult , Aged , Biological Specimen Banks/statistics & numerical data , Female , Humans , Logistic Models , Male , Middle Aged , United Kingdom , White People/genetics
16.
Nat Genet ; 50(11): 1593-1599, 2018 11.
Article in English | MEDLINE | ID: mdl-30349118

ABSTRACT

Genome-wide association studies (GWAS) have identified many loci contributing to variation in complex traits, yet the majority of loci that contribute to the heritability of complex traits remain elusive. Large study populations with sufficient statistical power are required to detect the small effect sizes of the yet unidentified genetic variants. However, the analysis of huge cohorts, like UK Biobank, is challenging. Here, we present an atlas of genetic associations for 118 non-binary and 660 binary traits of 452,264 UK Biobank participants of European ancestry. Results are compiled in a publicly accessible database that allows querying genome-wide association results for 9,113,133 genetic variants, as well as downloading GWAS summary statistics for over 30 million imputed genetic variants (>23 billion phenotype-genotype pairs). Our atlas of associations (GeneATLAS, http://geneatlas.roslin.ed.ac.uk ) will help researchers to query UK Biobank results in an easy and uniform way without the need to incur high computational costs.


Subject(s)
Atlases as Topic , Biological Specimen Banks , Chromosome Mapping , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Genetic Variation , Genotype , Humans , Information Storage and Retrieval/methods , Phenotype , Polymorphism, Single Nucleotide , Sample Size , United Kingdom , White People/genetics
17.
PLoS One ; 11(12): e0166755, 2016.
Article in English | MEDLINE | ID: mdl-27977676

ABSTRACT

Genome-wide association studies (GWAS) promised to translate their findings into clinically beneficial improvements of patient management by tailoring disease management to the individual through the prediction of disease risk. However, the ability to translate genetic findings from GWAS into predictive tools that are of clinical utility and which may inform clinical practice has, so far, been encouraging but limited. Here we propose to use a more powerful statistical approach, the use of which has traditionally been limited due to computational requirements and lack of sufficiently large individual level genotyped cohorts, but which improve the prediction of multiple medically relevant phenotypes using the same panel of SNPs. As a proof of principle, we used a shared panel of 319,038 common SNPs with MAF > 0.05 to train the prediction models in 114,264 unrelated White-British individuals for height and four obesity related traits (body mass index, basal metabolic rate, body fat percentage, and waist-to-hip ratio). We obtained prediction accuracies that ranged between 46% and 75% of the maximum achievable given the captured heritable component. For height, this represents an improvement in prediction accuracy of up to 68% (184% more phenotypic variance explained) over SNPs reported to be robustly associated with height in a previous GWAS meta-analysis of similar size. Across-population predictions in White non-British individuals were similar to those in White-British whilst those in Asian and Black individuals were informative but less accurate. We estimate that the genotyping of circa 500,000 unrelated individuals will yield predictions between 66% and 82% of the SNP-heritability captured by common variants in our array. Prediction accuracies did not improve when including rarer SNPs or when fitting multiple traits jointly in multivariate models.


Subject(s)
Adiposity/genetics , Basal Metabolism/genetics , Body Mass Index , Obesity/genetics , Polymorphism, Single Nucleotide , Waist-Hip Ratio , Anthropometry , Female , Genetic Association Studies , Genetic Variation , Genotype , Humans , Male , Models, Genetic , Phenotype
18.
Genome Biol ; 17(1): 166, 2016 07 29.
Article in English | MEDLINE | ID: mdl-27473438

ABSTRACT

BACKGROUND: Sex differences are a common feature of human traits; however, the role sex determination plays in human genetic variation remains unclear. The presence of gene-by-sex (GxS) interactions implies that trait genetic architecture differs between men and women. Here, we show that GxS interactions and genetic heterogeneity among sexes are small but common features of a range of high-level complex traits. RESULTS: We analyzed 19 complex traits measured in 54,040 unrelated men and 59,820 unrelated women from the UK Biobank cohort to estimate autosomal genetic correlations and heritability differences between men and women. For 13 of the 19 traits examined, there is evidence that the trait measured is genetically different between males and females. We find that estimates of genetic correlations, based on ~114,000 unrelated individuals and ~19,000 related individuals from the same cohort, are largely consistent. Genetic predictors using a sex-specific model that incorporated GxS interactions led to a relative improvement of up to 4 % (mean 1.4 % across all relevant phenotypes) over those provided by a sex-agnostic model. This further supports the hypothesis of the presence of sexual genetic heterogeneity across high-level phenotypes. CONCLUSIONS: The sex-specific environment seems to play a role in changing genotype expression across a range of human complex traits. Further studies of GxS interactions for high-level human traits may shed light on the molecular mechanisms that lead to biological differences between men and women. However, this may be a challenging endeavour due to the likely small effects of the interactions at individual loci.


Subject(s)
Genomics , Models, Genetic , Quantitative Trait Loci/genetics , Female , Genetic Variation , Humans , Male , Phenotype , Sex Characteristics , Sex Determination Processes
19.
Nat Genet ; 48(9): 980-3, 2016 09.
Article in English | MEDLINE | ID: mdl-27428752

ABSTRACT

Genome-wide association studies have detected many loci underlying susceptibility to disease, but most of the genetic factors that contribute to disease susceptibility remain unknown. Here we provide evidence that part of the 'missing heritability' can be explained by an overestimation of heritability. We estimated the heritability of 12 complex human diseases using family history of disease in 1,555,906 individuals of white ancestry from the UK Biobank. Estimates using simple family-based statistical models were inflated on average by ∼47% when compared with those from structural equation modeling (SEM), which specifically accounted for shared familial environmental factors. In addition, heritabilities estimated using SNP data explained an average of 44.2% of the simple family-based estimates across diseases and an average of 57.3% of the SEM-estimated heritabilities, accounting for almost all of the SEM heritability for hypertension. Our results show that both genetics and familial environment make substantial contributions to familial clustering of disease.


Subject(s)
Biological Specimen Banks , Disease/genetics , Gene-Environment Interaction , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Female , Genome-Wide Association Study , Humans , Male , Models, Genetic , Phenotype , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL