Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 126: 952-959, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30584929

ABSTRACT

Arabinoxylans (AX) microspheres with different insulin/AX mass ratio were prepared by formation of phenoxy radical issued from the ferulic acid by enzymatic oxidation (entrapped in situ of insulin). Phenolic acid content and FT-IR spectrum of unloaded and insulin-loaded AX microspheres revealed that the phenoxy radical issued from the ferulic acid by enzymatic oxidation did not interact covalently with insulin. The microspheres showed a spherical shape, smooth surface and an average diameter of particles of 320 µm. In vitro control release found that AX microspheres minimized the insulin loss in the upper GI tract, retaining high percentage (~75%) of insulin in its matrix. The stability of the secondary structure of insulin was studied by dichroism circular (CD). The CD spectra of insulin released from AX microspheres did not change according to the insulin/AX mass ratio of the microsphere. Significant hypoglycemic effects with improved insulin-relative bioavailability tested on an in vivo murine model revealed the efficacy of these enzymatically cross-linked arabinoxylans microspheres as a new oral insulin carrier.


Subject(s)
Cross-Linking Reagents/chemistry , Drug Delivery Systems , Insulin/administration & dosage , Laccase/metabolism , Microspheres , Xylans/chemistry , Administration, Oral , Animals , Blood Glucose/metabolism , Drug Liberation , Humans , Male , Rats, Wistar , Rheology , Spectroscopy, Fourier Transform Infrared , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL