Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 605: 513-527, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34340036

ABSTRACT

Hyper-crosslinked polymers (HCPs) have been produced by the Friedel-Crafts reaction using anthracene, benzene, carbazole or dibenzothiophene as precursors and dimethoxymethane as crosslinker, and the effect of graphene oxide (GO) addition has been studied. The resulting HCPs were highly microporous with BET areas (ABET) between 590 and 1120 m2g-1. The benzene-derived HCP (B1FeM2) and the corresponding composite with GO (B1FM2-GO) exhibited the highest ABET and were selected to study their hydrogen adsorption capacities in the pressure range of 0.1 - 14 MPa at 77 K. The maximum H2 excess uptake was 2.1 and 2.0 wt% for B1FeM2 and B1FeM2-GO, respectively, at 4 MPa and 77 K. The addition of GO reduced the specific surface area but increased the density of the resultant HCP-GO composites, which is beneficial for practical applications and proves that materials giving higher gravimetric storage capacities are not necessarily those that offer higher volumetric capacities. H2 adsorption-desorption cycles up to 14 MPa showed irreversible deformation of both HCP and HCP-GO materials, which calls into question their application for hydrogen adsorption at pressures above 4 MPa.


Subject(s)
Hydrogen , Polymers , Adsorption , Benzene
2.
ACS Appl Mater Interfaces ; 13(10): 12562-12574, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33661600

ABSTRACT

Hydrogen adsorption on activated carbons (ACs) is a promising alternative to compression and liquefaction for storing hydrogen. Herein, we have studied hydrogen adsorption on six commercial ACs (CACs) with surface areas ranging from 996 to 2216 m2 g-1 in a temperature range of 77 to 273 K and pressures up to 15 MPa. Excess hydrogen adsorption capacities of 2.3 to 5.8 wt % were obtained at 77 K and 4 MPa. We demonstrated that, contrary to what is normally done, hydrogen capacity is more accurately predicted by the surface area determined by the nonlocal density functional theory method applied to N2 and CO2 adsorption data than by the Brunauer-Emmett-Teller (BET) area. The modified Dubinin-Astakhov (MDA) equation was used to fit the experimental adsorption data, and the relationship between the MDA parameters (nmax, Va, α, and ß) and the textural properties of the CACs was determined for the first time. We concluded that the nmax and Va parameters are related to the BET area, while the α and ß parameters are related to the average micropore size and total pore volume, respectively. α and ß were used to evaluate the enthalpy and entropy of adsorption and we show that these parameters can be used to assess the best carbon for hydrogen storage or compression.

SELECTION OF CITATIONS
SEARCH DETAIL
...