Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hered ; 113(3): 298-310, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35438775

ABSTRACT

The California horn shark (Heterodontus francisci) is a small demersal species distributed from southern California and the Channel Islands to Baja California and the Gulf of California. These nocturnal reef predators maintain small home-ranges as adults and lay auger-shaped egg cases that become wedged into the substrate. While population trends are not well documented, this species is subject to fishing pressure through portions of its range and has been identified as vulnerable to overexploitation. Here, we present a survey of 318 specimens from across the range, using mtDNA control region sequences to provide the first genetic assessment of H. francisci. Overall population structure (ΦST = 0.266, P < 0.001) is consistent with limited dispersal as indicated by life history, with two distinct features. Population structure along the continuous coastline is low, with no discernable breaks from Santa Barbara, CA to Bahia Tortugas (Baja California Sur, Mexico); however, there is a notable partition at Punta Eugenia (BCS), a well-known biogeographic break between tropical and subtropical marine faunas. In contrast, population structure is much higher (max ΦST = 0.601, P < 0.05) between the coast and adjacent Channel Islands, a minimum distance of 19 km, indicating that horn sharks rarely disperse across deep habitat and open water. Population structure in most elasmobranchs is measured on a scale of hundreds to thousands of kilometers, but the California Horn Shark has population partitions on an unprecedented small scale, indicating a need for localized management strategies which ensure adequate protection of distinct stocks.


Subject(s)
Sharks , Animals , California , DNA, Mitochondrial/genetics , Ecosystem , Mexico , Sharks/genetics
2.
J Hered ; 111(1): 70-83, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31943081

ABSTRACT

Species flocks are proliferations of closely-related species, usually after colonization of depauperate habitat. These radiations are abundant on oceanic islands and in ancient freshwater lakes, but rare in marine habitats. This contrast is well documented in the Hawaiian Archipelago, where terrestrial examples include the speciose silverswords (sunflower family Asteraceae), Drosophila fruit flies, and honeycreepers (passerine birds), all derived from one or a few ancestral lineages. The marine fauna of Hawai'i is also the product of rare colonization events, but these colonizations usually yield only one species. Dispersal ability is key to understanding this evolutionary inequity. While terrestrial fauna rarely colonize between oceanic islands, marine fauna with pelagic larvae can make this leap in every generation. An informative exception is the marine fauna that lack a pelagic larval stage. These low-dispersal species emulate a "terrestrial" mode of reproduction (brooding, viviparity, crawl-away larvae), yielding marine species flocks in scattered locations around the world. Elsewhere, aquatic species flocks are concentrated in specific geographic settings, including the ancient lakes of Baikal (Siberia) and Tanganyika (eastern Africa), and Antarctica. These locations host multiple species flocks across a broad taxonomic spectrum, indicating a unifying evolutionary phenomenon. Hence marine species flocks can be singular cases that arise due to restricted dispersal or other intrinsic features, or they can be geographically clustered, promoted by extrinsic ecological circumstances. Here, we review and contrast intrinsic cases of species flocks in individual taxa, and extrinsic cases of geological/ecological opportunity, to elucidate the processes of species radiations.


Subject(s)
Genetic Speciation , Phylogeography , Animals , Antarctic Regions , Aquatic Organisms , Fishes , Fresh Water , Hawaii , Invertebrates , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...