Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Appl Microbiol Biotechnol ; 107(5-6): 1947-1957, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36723703

ABSTRACT

The use of egg yolk antibodies-IgY technology-represents an alternative to the production of mammalian immunoglobulins and has several advantages regarding animal welfare and lower costs of production. The use of adjuvants to achieve the hyperimmunization of laying hens plays a key role in the success of the production of high levels of the antibodies. In the present work, two different adjuvant systems (Freund's adjuvants and MontanideTM ISA 71 VG) were compared to produce IgY anti-Bothrops alternatus. For the first immunization, formalin-inactivated Salmonella was added to MontanideTM ISA 71 VG to emulate Freund's complete adjuvant which includes a mycobacteria antigen. After eight immunizations, IgY produced by using either adjuvant was able to neutralize the lethal activity of the venom in a mouse model, but differences were found regarding the recognition of components of the venom between the two adjuvants tested. Overall, MontanideTM adjuvant used in this work could be a good alternative choice to produce antibodies capable of neutralizing the lethality of complex antigens. This adjuvant is commercially available and used in the formulation of several poultry vaccines and could be used for the IgY technology instead of traditional immunomodulators such as Freund's adjuvants. Key points • IgY extracts recognized major components of the venom.• Avidity indexes of the IgY extracts increased after the successive immunizations.• IgY obtained by two adjuvant systems neutralized the lethal activity of the venom.


Subject(s)
Antibodies, Neutralizing , Venoms , Mice , Animals , Female , Egg Yolk , Chickens , Adjuvants, Immunologic , Freund's Adjuvant , Immunoglobulins , Adjuvants, Pharmaceutic , Mammals
2.
Cell Mol Neurobiol ; 43(5): 2203-2217, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36227397

ABSTRACT

Shiga toxin 2 (Stx2) from enterohemorrhagic Escherichia coli (EHEC) produces hemorrhagic colitis, hemolytic uremic syndrome (HUS), and acute encephalopathy. The mortality rate in HUS increases significantly when the central nervous system (CNS) is involved. Besides, EHEC also releases lipopolysaccharide (LPS). Many reports have described cognitive dysfunctions in HUS patients, the hippocampus being one of the brain areas targeted by EHEC infection. In this context, a translational murine model of encephalopathy was employed to establish the deleterious effects of Stx2 and the contribution of LPS in the hippocampus. The purpose of this work is to elucidate the signaling pathways that may activate the inflammatory processes triggered by Stx2, which produces cognitive alterations at the level of the hippocampus. Results demonstrate that Stx2 produced depression-like behavior, pro-inflammatory cytokine release, and NF-kB activation independent of the ERK1/2 signaling pathway, while co-administration of Stx2 and LPS reduced memory index. On the other hand, LPS activated NF-kB dependent on ERK1/2 signaling pathway. Cotreatment of Stx2 with LPS aggravated the pathologic state, while dexamethasone treatment succeeded in preventing behavioral alterations. Our present work suggests that the use of drugs such as corticosteroids or NF-kB signaling inhibitors may serve as neuroprotectors from EHEC infection.


Subject(s)
Brain Diseases , Cognitive Dysfunction , Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Hemolytic-Uremic Syndrome , Mice , Humans , Animals , Shiga Toxin 2/toxicity , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System , NF-kappa B , Brain/pathology , Escherichia coli Infections/complications , Escherichia coli Infections/drug therapy , Escherichia coli Infections/pathology , Hippocampus/pathology , Cognition
3.
Toxicon ; 216: 115-124, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35835234

ABSTRACT

Encephalopathy associated with hemolytic uremic syndrome is produced by enterohemorrhagic E. coli (EHEC) infection, which releases the virulence factors Shiga toxin (Stx) and lipopolysaccharide (LPS). Neurological compromise is a poor prognosis and mortality factor of the disease, and the thalamus is one of the brain areas most frequently affected. We have previously demonstrated the effectiveness of anti-inflammatory drugs to ameliorate the deleterious effects of these toxins. However, the thalamic production of cytokines involved in pro-inflammatory processes has not yet been acknowledged. The aim of this work attempts to determine whether systemic sublethal Stx2a or co-administration of Stx2a with LPS are able to rise a proinflammatory profile accompanying alterations of the neurovascular unit in anterior and lateral ventral nuclei of the thalamus (VA-VL) and motor behavior in mice. After 4 days of treatment, Stx2a affected the lectin-bound microvasculature distribution while increasing the expression of GFAP in reactive astrocytes and producing aberrant NeuN distribution in degenerative neurons. In addition, increased swimming latency was observed in a motor behavioral test. All these alterations were heightened when Stx2a was co-administered with LPS. The expression of pro-inflammatory cytokines TNFα, INF-γ and IL-2 was detected in VA-VL. All these effects were concomitant with increased expression of the Stx receptor globotriaosylceramide (Gb3), which hints at receptor involvement in the neuroinflammatory process as a key finding of this study. In conclusion, Stx2a to Gb3 may be determinant in triggering a neuroinflammatory event, which may resemble clinical outcomes and should thus be considered in the development of preventive strategies.


Subject(s)
Escherichia coli Infections , Shiga Toxin 2 , Animals , Cytokines/metabolism , Escherichia coli/metabolism , Lipopolysaccharides/toxicity , Mice , Shiga Toxin/metabolism , Shiga Toxin 2/toxicity , Thalamus/metabolism , Trihexosylceramides
4.
Mol Immunol ; 135: 183-190, 2021 07.
Article in English | MEDLINE | ID: mdl-33930713

ABSTRACT

Bee venom is a complex mixture of molecules, among which melittin and phospholipase A2 (PLA2) are the toxic components involved in envenoming accidents with multiple honeybee stings. Traditionally, the treatment of envenomings has been based on the administration of specific antibodies to neutralize the deleterious effects of toxins. An alternative to mammalian polyclonal antibodies is the use of egg yolk immunoglobulins (IgY) due to their advantages regarding animal welfare and lower costs of production as compared to the conventional production methods. In this work, a novel composition containing specific IgY antibodies was developed. After four immunizations, IgY extracted from the egg yolks was able to recognize several components of the bee venom, including melittin and PLA2. The performance of IgY to neutralize the lethal activity was evaluated in a mouse model by using one median lethal dose (LD50) of the bee venom. The effective dose of the IgY extract was determined as 30.66 µg/mg. These results demonstrate the feasibility to produce IgY-based antivenoms to treat envenomings by multiple bee stings.


Subject(s)
Antibodies, Neutralizing/immunology , Bee Venoms/antagonists & inhibitors , Bee Venoms/immunology , Immunoglobulins/immunology , Immunoglobulins/pharmacology , Insect Bites and Stings/therapy , Animals , Bee Venoms/metabolism , Bees/pathogenicity , Chick Embryo , Chickens , Egg Yolk/immunology , Female , Male , Melitten/immunology , Mice , Phospholipases A2/immunology
5.
Toxicon ; 163: 84-92, 2019 May.
Article in English | MEDLINE | ID: mdl-30914282

ABSTRACT

Antivenom for the treatment of bothropic snakebite is a priority for public health institutions from Latin America. An alternative to the conventional antivenom production is based on the use of egg yolk antibodies - IgY-technology - by immunizing laying hens. In this study, we produced, characterized and assessed the efficacy of IgY-based antivenoms against B. alternatus venom. Immunochemical studies (reactivity, avidity and antigen recognition pattern) as well as antivenom efficacy assays were performed. After the 3rd immunization, levels of specific IgY reached a maximum that was maintained throughout the observation period, while avidity indexes of the extracts increased after the successive immunizations. Furthermore, IgY against B. alternatus recognized protein complexes of the venom with high (>40 kDa), medium (20-40 kDa) and low (<20 kDa) molecular weights. IgY antivenoms obtained after 8 immunizations neutralized 35.65 µg of B. alternatus venom per mg of antivenom, while specific activities values ranged from 0.28 to 0.42. In conclusion, we produced and characterized IgY antivenoms capable of neutralizing the lethal activity of B. alternatus venom at a preclinical level. Thus, IgY-technology may allow the production of effective and affordable antivenoms fulfilling the urgent needs of many countries where conventional manufacture is unable to provide enough availability of antivenoms.


Subject(s)
Antivenins/biosynthesis , Bothrops , Crotalid Venoms/immunology , Immunoglobulins/biosynthesis , Animals , Antivenins/immunology , Chickens , Crotalid Venoms/chemistry , Crotalid Venoms/toxicity , Egg Yolk/immunology , Female , Immunoglobulins/immunology , Mice , Neutralization Tests
6.
J Biomed Sci ; 26(1): 16, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30732602

ABSTRACT

BACKGROUND: Shiga toxin 2 from enterohemorrhagic Escherichia coli is the etiologic agent of bloody diarrhea, hemolytic uremic syndrome and derived encephalopathies that may result to death in patients. Being a Gram negative bacterium, lipopolysaccharide is also released. Particularly, the hippocampus has been found affected in patients intoxicated with Shiga toxin 2. In the current work, the deleterious effects of Shiga toxin 2 and lipopolysaccharide are investigated in detail in hippocampal cells for the first time in a translational murine model, providing conclusive evidences on how these toxins may damage in the observed clinic cases. METHODS: Male NIH mice (25 g) were injected intravenously with saline solution, lipopolysaccharide, Shiga toxin 2 or a combination of Shiga toxin 2 with lipopolysaccharide. Brain water content assay was made to determine brain edema. Another set of animals were intracardially perfused with a fixative solution and their brains were subjected to immunofluorescence with lectins to determine the microvasculature profile, and anti-GFAP, anti-NeuN, anti-MBP and anti-Iba1 to study reactive astrocytes, neuronal damage, myelin dysarrangements and microglial state respectively. Finally, the Thiobarbituric Acid Reactive Substances Assay was made to determine lipid peroxidation. In all assays, statistical significance was performed using the One-way analysis of variance followed by Bonferroni post hoc test. RESULTS: Systemic sublethal administration of Shiga toxin 2 increased the expressions of astrocytic GFAP and microglial Iba1, and decreased the expressions of endothelial glycocalyx, NeuN neurons from CA1 pyramidal layer and oligodendrocytic MBP myelin sheath from the fimbria of the hippocampus. In addition, increased interstitial fluids and Thiobarbituric Acid Reactive Substances-derived lipid peroxidation were also found. The observed outcomes were enhanced when sublethal administration of Shiga toxin 2 was co-administered together with lipopolysaccharide. CONCLUSION: Systemic sublethal administration of Shiga toxin 2 produced a deterioration of the cells that integrate the vascular unit displaying astrocytic and microglial reactive profiles, while edema and lipid peroxidation were also observed. The contribution of lipopolysaccharide to pathogenicity caused by Shiga toxin 2 resulted to enhance the observed hippocampal damage.


Subject(s)
Edema/physiopathology , Enterohemorrhagic Escherichia coli/physiology , Hippocampus/physiopathology , Lipid Peroxidation , Lipopolysaccharides/adverse effects , Shiga Toxin 2/adverse effects , Animals , Edema/microbiology , Hippocampus/drug effects , Hippocampus/microbiology , Lipid Peroxidation/drug effects , Male , Mice , Neuroglia/drug effects , Neuroglia/microbiology , Neuroglia/physiology
7.
Int J Med Microbiol ; 308(8): 1036-1042, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30314914

ABSTRACT

Infections by Enterohemorrhagic Escherichia coli may cause in addition to hemolytic uremic syndrome neurological disorders which may lead to fatal outcomes in patients. The brain striatum is usually affected during this outcome. The aim of this study was to determine in this area the role of the microglia in pro-inflammatory events that may occur during Shiga toxin 2 intoxication and consequently to this, whether oligodendrocytes were being affected. In the present paper we demonstrated that anti-inflammatory treatments reduced deleterious effects in brain striatal cells exposed to Shiga toxin 2 and LPS. While dexamethasone treatment decreased microglial activation and recovered myelin integrity in the mice striatum, etanercept treatment decreased neuronal uptake of Stx2 in rat striatal neurons, improving the affected area from toxin-derived injury. In conclusion, microglial activation is related to pro-inflammatory events that may deteriorate the brain function during intoxication with Stx2 and LPS. Consequently, the role of anti-inflammatory agents in the treatment of EHEC-derived encephalopathy should be studied in clinical trials.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Brain Diseases/drug therapy , Enterohemorrhagic Escherichia coli/pathogenicity , Escherichia coli Infections/drug therapy , Microglia/drug effects , Shiga Toxin 2/toxicity , Animals , Brain Diseases/microbiology , Dexamethasone/administration & dosage , Dexamethasone/pharmacology , Escherichia coli Infections/microbiology , Etanercept/administration & dosage , Etanercept/pharmacology , Humans , Lipopolysaccharides/toxicity , Male , Mice , Microglia/pathology , Oligodendroglia/drug effects , Oligodendroglia/pathology , Rats , Rats, Sprague-Dawley
8.
Anaerobe ; 48: 83-88, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28764997

ABSTRACT

Iota toxin is a binary toxin solely produced by Clostridium perfringens type E strains, and is structurally related to CDT from C. difficile and CST from C. spiroforme. As type E causes hemorrhagic enteritis in cattle, it is usually assumed that associated diseases are mediated by iota toxin, although evidence in this regard has not been provided. In the present report, iota toxin intestinal effects were evaluated in vivo using a mouse model. Histological damage was observed in ileal loops treated with purified iota toxin after 4 h of incubation. Luminal iota toxin induced fluid accumulation in the small intestine in a dose dependent manner, as determined by the enteropooling and the intestinal loop assays. None of these changes were observed in the large intestine. These results suggest that C. perfringens iota toxin alters intestinal permeability, predominantly by inducing necrosis and degenerative changes in the mucosal epithelium of the small intestine, as well as changes in intestinal motility. The obtained results suggest a central role for iota toxin in the pathogenesis of C. perfringens type E hemorrhagic enteritis, and contribute to remark the importance of clostridial binary toxins in digestive diseases.


Subject(s)
ADP Ribose Transferases/metabolism , Bacterial Toxins/metabolism , Capillary Permeability/physiology , Clostridium perfringens/pathogenicity , Intestinal Mucosa/pathology , Intestine, Large/pathology , Intestine, Small/pathology , Animals , Gastrointestinal Transit/physiology , Intestinal Mucosa/microbiology , Intestine, Large/microbiology , Intestine, Small/metabolism , Intestine, Small/microbiology , Male , Mice , Necrosis/microbiology
9.
Toxicon ; 130: 19-28, 2017 May.
Article in English | MEDLINE | ID: mdl-28237716

ABSTRACT

Clostridium perfringens epsilon toxin (ETX), the most potent toxin produced by this bacteria, plays a key role in the pathogenesis of enterotoxaemia in ruminants, causing brain edema and encephalomalacia. Studies of animals suffering from ETX intoxication describe severe neurological disorders that are thought to be the result of vasogenic brain edemas and indirect neuronal toxicity, killing oligodendrocytes but not astrocytes, microglia, or neurons in vitro. In this study, by means of intravenous and intracerebroventricular delivery of sub-lethal concentrations of ETX, the histological and ultrastructural changes of the brain were studied in rats and mice. Histological analysis showed degenerative changes in neurons from the cortex, hippocampus, striatum and hypothalamus. Ultrastructurally, necrotic neurons and apoptotic cells were observed in these same areas, among axons with accumulation of neurofilaments and demyelination as well as synaptic stripping. Lesions observed in the brain after sub-lethal exposure to ETX, result in permanent behavioral changes in animals surviving ETX exposure, as observed individually in several animals and assessed in the Inclined Plane Test and the Wire Hang Test. Pharmacological studies showed that dexamethasone and reserpine but not ketamine or riluzole were able to reduce the brain lesions and the lethality of ETX. Cytotoxicity was not observed upon neuronal primary cultures in vitro. Therefore, we hypothesize that ETX can affect the brain of animals independently of death, producing changes on neurons or glia as the result of complex interactions, independently of ETX-BBB interactions.


Subject(s)
Bacterial Toxins/toxicity , Brain/drug effects , Animals , Apoptosis/drug effects , Behavior, Animal/drug effects , Brain/pathology , Brain/ultrastructure , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Cerebral Cortex/ultrastructure , Corpus Striatum/drug effects , Corpus Striatum/pathology , Corpus Striatum/ultrastructure , Demyelinating Diseases/chemically induced , Dexamethasone/therapeutic use , Female , Hippocampus/drug effects , Hippocampus/pathology , Hippocampus/ultrastructure , Hypothalamus/drug effects , Hypothalamus/pathology , Hypothalamus/ultrastructure , Intermediate Filaments/drug effects , Ketamine/therapeutic use , Lethal Dose 50 , Male , Mice , Neurons/drug effects , Neurons/pathology , Neurons/ultrastructure , Neuroprotective Agents/therapeutic use , Rats , Rats, Sprague-Dawley , Reserpine/therapeutic use , Riluzole/therapeutic use , Synapses/drug effects
10.
Neuroscience ; 344: 25-38, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28042026

ABSTRACT

Shiga toxin 2 (Stx2) from enterohemorrhagic Escherichia coli (EHEC) causes bloody diarrhea and Hemolytic Uremic Syndrome (HUS) that may derive to fatal neurological outcomes. Neurological abnormalities in the striatum are frequently observed in affected patients and in studies with animal models while motor disorders are usually associated with pyramidal and extra pyramidal systems. A translational murine model of encephalopathy was employed to demonstrate that systemic administration of a sublethal dose of Stx2 damaged the striatal microvasculature and astrocytes, increase the blood brain barrier permeability and caused neuronal degeneration. All these events were aggravated by lipopolysaccharide (LPS). The injury observed in the striatum coincided with locomotor behavioral alterations. The anti-inflammatory Dexamethasone resulted to prevent the observed neurologic and clinical signs, proving to be an effective drug. Therefore, the present work demonstrates that: (i) systemic sub-lethal Stx2 damages the striatal neurovascular unit as it succeeds to pass through the blood brain barrier. (ii) This damage is aggravated by the contribution of LPS which is also produced and secreted by EHEC, and (iii) the observed neurological alterations may be prevented by an anti-inflammatory treatment.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cerebrovascular Disorders/drug therapy , Dexamethasone/pharmacology , Lipopolysaccharides/toxicity , Movement Disorders/drug therapy , Shiga Toxin 2/toxicity , Animals , Astrocytes/drug effects , Astrocytes/immunology , Astrocytes/pathology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/immunology , Blood-Brain Barrier/pathology , Capillary Permeability/drug effects , Capillary Permeability/physiology , Cerebrovascular Disorders/etiology , Cerebrovascular Disorders/immunology , Cerebrovascular Disorders/pathology , Corpus Striatum/blood supply , Corpus Striatum/drug effects , Corpus Striatum/immunology , Corpus Striatum/pathology , Disease Models, Animal , Escherichia coli , Female , Mice , Microvessels/drug effects , Microvessels/immunology , Microvessels/pathology , Motor Activity/drug effects , Motor Activity/physiology , Movement Disorders/etiology , Movement Disorders/immunology , Movement Disorders/pathology , Neuroprotective Agents/pharmacology
11.
Front Microbiol ; 7: 133, 2016.
Article in English | MEDLINE | ID: mdl-26904009

ABSTRACT

Shiga toxin producing Escherichia coli may damage the central nervous system before or concomitantly to manifested hemolytic-uremic syndrome symptoms. The cerebellum is frequently damaged during this syndrome, however, the deleterious effects of Shiga toxin 2 has never been integrally reported by ultrastructural, physiological and behavioral means. The aim of this study was to determine the cerebellar compromise after intravenous administration of a sub-lethal dose of Shiga toxin 2 by measuring the cerebellar blood-brain barrier permeability, behavioral task of cerebellar functionality (inclined plane test), and ultrastructural analysis (transmission electron microscope). Intravenous administration of vehicle (control group), sub-lethal dose of 0.5 and 1 ηg of Stx2 per mouse were tested for behavioral and ultrastructural studies. A set of three independent experiments were performed for each study (n = 6). Blood-brain barrier resulted damaged and consequently its permeability was significantly increased. Lower scores obtained in the inclined plane task denoted poor cerebellar functionality in comparison to their controls. The most significant lower score was obtained after 5 days of 1 ηg of toxin administration. Transmission electron microscope micrographs from the Stx2-treated groups showed neurons with a progressive neurodegenerative condition in a dose dependent manner. As sub-lethal intravenous Shiga toxin 2 altered the blood brain barrier permeability in the cerebellum the toxin penetrated the cerebellar parenchyma and produced cell damaged with significant functional implications in the test balance.

12.
PLoS One ; 8(7): e70020, 2013.
Article in English | MEDLINE | ID: mdl-23894578

ABSTRACT

Shiga toxin 2 (Stx2)-producing Escherichia coli (STEC) causes hemorrhagic colitis and hemolytic uremic syndrome (HUS) that can lead to fatal encephalopathies. Neurological abnormalities may occur before or after the onset of systemic pathological symptoms and motor disorders are frequently observed in affected patients and in studies with animal models. As Stx2 succeeds in crossing the blood-brain barrier (BBB) and invading the brain parenchyma, it is highly probable that the observed neurological alterations are based on the possibility that the toxin may trigger the impairment of the neurovascular unit and/or cell damage in the parenchyma. Also, lipopolysaccharide (LPS) produced and secreted by enterohemorrhagic Escherichia coli (EHEC) may aggravate the deleterious effects of Stx2 in the brain. Therefore, this study aimed to determine (i) whether Stx2 affects the neurovascular unit and parenchymal cells, (ii) whether the contribution of LPS aggravates these effects, and (iii) whether an inflammatory event underlies the pathophysiological mechanisms that lead to the observed injury. The administration of a sub-lethal dose of Stx2 was employed to study in detail the motor cortex obtained from a translational murine model of encephalopathy. In the present paper we report that Stx2 damaged microvasculature, caused astrocyte reaction and neuronal degeneration, and that this was aggravated by LPS. Dexamethasone, an anti-inflammatory, reversed the pathologic effects and proved to be an important drug in the treatment of acute encephalopathies.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dexamethasone/pharmacology , Lipopolysaccharides/toxicity , Motor Cortex/blood supply , Motor Cortex/drug effects , Shiga Toxin 2/toxicity , Animals , Astrocytes/drug effects , Astrocytes/pathology , Disease Models, Animal , Drug Synergism , Female , Mice , Microvessels/drug effects , Motor Cortex/pathology , Neurons/drug effects , Neurons/pathology , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/etiology , Shiga Toxin 2/isolation & purification , Shiga-Toxigenic Escherichia coli/chemistry , Specific Pathogen-Free Organisms
13.
PLoS One ; 8(1): e55812, 2013.
Article in English | MEDLINE | ID: mdl-23383285

ABSTRACT

Infection by Shiga toxin-producing Escherichia coli causes hemorrhagic colitis, hemolytic uremic syndrome (HUS), acute renal failure, and also central nervous system complications in around 30% of the children affected. Besides, neurological deficits are one of the most unrepairable and untreatable outcomes of HUS. Study of the striatum is relevant because basal ganglia are one of the brain areas most commonly affected in patients that have suffered from HUS and since the deleterious effects of a sub-lethal dose of Shiga toxin have never been studied in the striatum, the purpose of this study was to attempt to simulate an infection by Shiga toxin-producing E. coli in a murine model. To this end, intravenous administration of a sub-lethal dose of Shiga toxin 2 (0.5 ηg per mouse) was used and the correlation between neurological manifestations and ultrastructural changes in striatal brain cells was studied in detail. Neurological manifestations included significant motor behavior abnormalities in spontaneous motor activity, gait, pelvic elevation and hind limb activity eight days after administration of the toxin. Transmission electron microscopy revealed that the toxin caused early perivascular edema two days after administration, as well as significant damage in astrocytes four days after administration and significant damage in neurons and oligodendrocytes eight days after administration. Interrupted synapses and mast cell extravasation were also found eight days after administration of the toxin. We thus conclude that the chronological order of events observed in the striatum could explain the neurological disorders found eight days after administration of the toxin.


Subject(s)
Corpus Striatum/drug effects , Corpus Striatum/ultrastructure , Shiga Toxin 2/toxicity , Administration, Intravenous , Animals , Astrocytes/drug effects , Astrocytes/pathology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Blood-Brain Barrier/ultrastructure , Corpus Striatum/pathology , Disease Models, Animal , Edema , Male , Mast Cells/pathology , Mice , Motor Activity/drug effects , Necrosis , Neurons/drug effects , Neurons/pathology , Oligodendroglia/drug effects , Oligodendroglia/pathology , Oligodendroglia/ultrastructure , Shiga Toxin 2/administration & dosage , Synapses/drug effects , Synapses/pathology , Synapses/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...