Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Br J Dermatol ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820176

ABSTRACT

BACKGROUND: Recessive dystrophic epidermolysis bullosa (RDEB) is a blistering disease caused by mutations in the gene encoding type VII collagen (C7). RDEB is associated with fibrosis, which is responsible for severe complications. The phenotypic variability observed in RDEB siblings suggests that epigenetic modifications contribute to disease severity. Identifying epigenetic changes may help to uncover molecular mechanisms underlying RDEB pathogenesis and new therapeutic targets. OBJECTIVES: To investigate histone acetylation in RDEB skin and to explore histone deacetylase inhibitors (HDACis) as therapeutic molecules capable of counteracting fibrosis and disease progression in RDEB mice. METHODS: Acetylated histone levels were detected in human skin by immunofluorescence and in RDEB fibroblasts by ELISA. The effects of Givinostat and valproic acid (VPA) on RDEB fibroblast fibrotic behaviour were assessed by collagen-gel contraction assay, Western blot and immunocytofluorescence for α-smooth muscle actin, ELISA for released transforming growth factor-ß1 (TGF-ß1). RNA-seq was performed in HDACi- and vehicle-treated RDEB fibroblasts. VPA was systemically administered to RDEB mice, and effects on overt phenotype were monitored. Fibrosis was investigated in the skin using histological and immunofluorescence analyses. Eye and tongue defects were examined microscopically. Mass spectrometry proteomics was performed on skin protein extracts from VPA-treated RDEB and control mice. RESULTS: Histone acetylation decreases in RDEB skin and primary fibroblasts. RDEB fibroblasts treated with HDACis lowered fibrotic traits including contractility, TGF-ß1 release, and proliferation. VPA administration to RDEB mice mitigated severe manifestations affecting eyes and paws. These effects were associated with fibrosis inhibition. Proteomic analysis of mouse skin revealed that VPA almost normalised protein sets involved in protein synthesis and immune response, processes linked to the increased susceptibility to cancer and bacterial infections observed in RDEB patients. CONCLUSIONS: Dysregulated histone acetylation contributes to RDEB pathogenesis by facilitating the progression of fibrosis. Repurposing of HDACi could be considered for disease-modifying treatments of RDEB.

2.
Cells ; 12(21)2023 10 25.
Article in English | MEDLINE | ID: mdl-37947594

ABSTRACT

Neuroblastoma (NB) is the most common extracranial solid tumor during infancy, causing up to 10% of mortality in children; thus, identifying novel early and accurate diagnostic and prognostic biomarkers is mandatory. NB-derived exosomes carry proteins (Exo-prots) reflecting the status of the tumor cell of origin. The purpose of this study was to characterize, for the first time, the Exo-prots specifically expressed in NB patients associated with tumor phenotype and disease stage. We isolated exosomes from plasma specimens of 24 HR-NB patients and 24 low-risk (LR-NB) patients at diagnosis and of 24 age-matched healthy controls (CTRL). Exo-prot expression was measured by liquid chromatography-mass spectrometry. The data are available via ProteomeXchange (PXD042422). The NB patients had a different Exo-prot expression profile compared to the CTRL. The deregulated Exo-prots in the NB specimens acted mainly in the tumor-associated pathways. The HR-NB patients showed a different Exo-prot expression profile compared to the LR-NB patients, with the modulation of proteins involved in cell migration, proliferation and metastasis. NCAM, NCL, LUM and VASP demonstrated a diagnostic value in discriminating the NB patients from the CTRL; meanwhile, MYH9, FN1, CALR, AKAP12 and LTBP1 were able to differentiate between the HR-NB and LR-NB patients with high accuracy. Therefore, Exo-prots contribute to NB tumor development and to the aggressive metastatic NB phenotype.


Subject(s)
Exosomes , Neuroblastoma , Child , Humans , Exosomes/metabolism , Prognosis , Neuroblastoma/genetics , Phenotype , Biomarkers/metabolism
3.
Eur J Cancer ; 193: 113291, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37708628

ABSTRACT

OBJECTIVE: Seek new candidate prognostic markers for neuroblastoma outcome, relapse or progression. MATERIALS AND METHODS: In this multicentre and retrospective study, Random Forests coupled with recursive feature elimination techniques were applied to electronic records (55 clinical features) of 3034 neuroblastoma patients. To assess model performance and feature importance, dataset was split into a training set (80%) and a test set (20%). RESULTS: In the test set, the mean Matthews correlation coefficient for the Random Forests models was greater than 0.46. Feature importance analysis revealed that, together with maximum response to first-line treatment (D_MAX_RESP), time to maximum response to first-line treatment (TIME_MAX_RESP.days) is a relevant predictor of both patients' outcome and relapse\progression. We showed the prognostic value of the max response to first-line treatment in clinically relevant subsets of high-, intermediate-, and low-risk patients for both overall and relapse-free survival (Log-rank p-value<0.0001). In high-risk patients older than 18 months and stage 4 tumour achieving a complete response or very good partial response, patients who exhibited a D_MAX_RESP greater than 9 months showed a better prognosis with respect to patients achieving D_MAX_RESP earlier than 9 months (overall survival): hazard ratio 3.3 95% confidence interval 1.8-5.9, Log-rank p-value p < 0.0001; relapse-free survival: 3.2 95%CI 1.8-5.6, Log-rank p-value p < 0.0001). CONCLUSION: Our findings evidence the emerging role of the TIME_MAX_RESP.days in addition to the D_MAX_RESP as relevant predictors of outcome and relapse\progression in neuroblastoma with potential clinical impact on the management and treatment of patients.

4.
Front Immunol ; 14: 1134747, 2023.
Article in English | MEDLINE | ID: mdl-37205098

ABSTRACT

Introduction: New early low-invasive biomarkers are demanded for the management of Oligoarticular Juvenile Idiopathic Arthritis (OJIA), the most common chronic pediatric rheumatic disease in Western countries and a leading cause of disability. A deeper understanding of the molecular basis of OJIA pathophysiology is essential for identifying new biomarkers for earlier disease diagnosis and patient stratification and to guide targeted therapeutic intervention. Proteomic profiling of extracellular vesicles (EVs) released in biological fluids has recently emerged as a minimally invasive approach to elucidate adult arthritis pathogenic mechanisms and identify new biomarkers. However, EV-prot expression and potential as biomarkers in OJIA have not been explored. This study represents the first detailed longitudinal characterization of the EV-proteome in OJIA patients. Methods: Fourty-five OJIA patients were recruited at disease onset and followed up for 24 months, and protein expression profiling was carried out by liquid chromatography-tandem mass spectrometry in EVs isolated from plasma (PL) and synovial fluid (SF) samples. Results: We first compared the EV-proteome of SF vs paired PL and identified a panel of EV-prots whose expression was significantly deregulated in SF. Interaction network and GO enrichment analyses performed on deregulated EV-prots through STRING database and ShinyGO webserver revealed enrichment in processes related to cartilage/bone metabolism and inflammation, suggesting their role in OJIA pathogenesis and potential value as early molecular indicators of OJIA development. Comparative analysis of the EV-proteome in PL and SF from OJIA patients vs PL from age/gender-matched control children was then carried out. We detected altered expression of a panel of EV-prots able to differentiate new-onset OJIA patients from control children, potentially representing a disease-associated signature measurable at both the systemic and local levels with diagnostic potential. Deregulated EV-prots were significantly associated with biological processes related to innate immunity, antigen processing and presentation, and cytoskeleton organization. Finally, we ran WGCNA on the SF- and PL-derived EV-prot datasets and identified a few EV-prot modules associated with different clinical parameters stratifying OJIA patients in distinct subgroups. Discussion: These data provide novel mechanistic insights into OJIA pathophysiology and an important contribution in the search of new candidate molecular biomarkers for the disease.


Subject(s)
Arthritis, Juvenile , Extracellular Vesicles , Adult , Humans , Child , Synovial Fluid , Proteome , Proteomics , Biomarkers , Extracellular Vesicles/pathology
5.
Cancers (Basel) ; 15(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37046696

ABSTRACT

Neuroblastoma (NB) is a tumor affecting the peripheral sympathetic nervous system that substantially contributes to childhood cancer mortality. Despite recent advances in understanding the complexity of NB, the mechanisms determining its progression are still largely unknown. Some recurrent segmental chromosome aberrations (SCA) have been associated with poor survival. However, the prognostic role of most SCA has not yet been investigated. We examined a cohort of 260 NB primary tumors at disease onset for the loss of chromosome 10q, by array-comparative genomic hybridization (a-CGH) and Single Nucleotide Polymorphism (SNP) array and we found that 26 showed 10q loss, while the others 234 displayed different SCA. We observed a lower event-free survival for NB patients displaying 10q loss compared to patients with tumors carrying other SCA. Furthermore, analyzing the region of 10q loss, we identified a cluster of 75 deleted genes associated with poorer outcome. Low expression of six of these genes, above all CCSER2, was significantly correlated to worse survival using in silico data from 786 NB patients. These potential tumor suppressor genes can be partly responsible for the poor prognosis of NB patients with 10q loss.

6.
Cancers (Basel) ; 15(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36831529

ABSTRACT

The early evaluation of prognostic tumour markers is commonly performed by comparing the survival of two groups of patients identified on the basis of a cut-off value. The corresponding hazard ratio (HR) is usually estimated, representing a measure of the relative risk between patients with marker values above and below the cut-off. A posteriori methods identifying an optimal cut-off are appropriate when the functional form of the relation between the marker distribution and patient survival is unknown, but they are prone to an overestimation bias. In the presence of a small sample size, which is typical of rare diseases, the external validation sets are hardly available and internal cross-validation could be unfeasible. We describe a new method to obtain an unbiased estimate of the HR at an optimal cut-off, exploiting the simple relation between the HR and the associated p-value estimated by a random permutation analysis. We validate the method on both simulated data and set of gene expression profiles from two large, publicly available data sets. Furthermore, a reanalysis of a previously published study, which included 134 Stage 4S neuroblastoma patients, allowed for the identification of E2F1 as a new gene with potential oncogenic activity. This finding was confirmed by an immunofluorescence analysis on an independent cohort.

7.
Front Bioeng Biotechnol ; 10: 1000879, 2022.
Article in English | MEDLINE | ID: mdl-36338130

ABSTRACT

Inflammatory processes contribute to osteoarthritis (OA) severity and progression. Mesenchymal stem cells, particularly those derived from adipose tissue (ASCs), are able to sense and control the inflammatory environment. This immunomodulatory potential can be boosted by different priming strategies based on inflammatory stimulation. The aim of the present study is to investigate the transcriptional modulation of a huge panel of genes and functionally verify the predicted immunomodulatory ability of ASCs after interleukin one beta (IL-1ß) priming. ASCs were isolated from adipose tissue obtained from three donors and expanded. After stimulation with 1 ng/ml of IL-1ß for 48 h, cells were collected for gene array and functional tests. Pooled cells from three donors were used for RNA extraction and gene array analysis. Gene Ontology (GO) enrichment analysis and Gene Set Enrichment Analysis (GSEA) were performed to assess the involvement of the modulated genes after priming in specific biological processes and pathways. Functional co-culture tests of ASCs with T cells and macrophages were performed to assess the ability of primed ASCs to modulate immune cell phenotype. Among the overall genes analyzed in the gene array, about the 18% were up- or down-regulated in ASCs after IL-1ß priming. GO enrichment analysis of up- or down-regulated genes in ASCs after IL-1ß priming allowed identifying specific pathways involved in the modulation of inflammation and extracellular matrix remodeling. The main processes enriched according to the GSEA are related to the inflammatory response and cell proliferative processes. Functional tests on immune cells showed that primed and non-primed ASCs induced a decrease in the CD3+ T lymphocytes survival rate and an anti-inflammatory macrophage polarization. In conclusion, IL-1ß priming represents a tailored strategy to enhance the ability of ASCs to direct macrophages towards an anti-inflammatory phenotype and, consequently, improve the efficacy of ASCs in counteracting the OA inflammatory component.

8.
EBioMedicine ; 85: 104300, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36209521

ABSTRACT

BACKGROUND: Neuroblastoma (NB) represents the most frequent form of extra-cranial solid tumour of infants, responsible for 15% of childhood cancer deaths. Nucleolin (NCL) prognostic value in NB was investigated. METHODS: NCL protein expression was retrospectively evaluated in tumour samples of NB patients at diagnosis and after chemotherapy. NCL prognostic value at mRNA level was assessed in a cohort of 20 patients with stage 4 NB (qPCR20, n=20, discovery dataset) and in the MultiPlatform786 including 786 patients of all stages (validation dataset). Overall and event-free survival curves were plotted by Kaplan-Meier method and compared by log-rank test. FINDINGS: NCL protein, down-modulated after chemotherapy in association with features of neuroblastic differentiation,resulted statistically significantly overexpressed in NB tumours and higher in stage 4 compared to stage 1,2,3 patients. In the stage 4 patients cohort qPCR20, patients with high NCLmRNA expression revealed a statisticallysignificant lower survival probability than those with low NCL expression (OS: HR 4.1 95%CI 1.2-13.8;p=0.0215[Log-rank test], EFS: HR 4.1 95%CI 1.2-14.0, p=0.0197[Log-rank test]). In the MultiPlatform786 (n=786), multivariate analysis suggested thatNCL expression has a statistically significant prognostic value even in the model adjusted for established prognostic markers. NCL expression significantly stratified also patients with >18 months and stage 4 tumour (OS: HR 1.8 95%CI 1.2-2.7, p=0.0009[Log-rank test]; EFS: HR 1.7 95%CI 1.1-2.5, p=0.002[Log-rank test]), patients with>18 months stage 4 with MYCN non amplified tumour[EFS: HR 2.3 95%CI 1.2-4.7, p=0.01[Log-rank test]), and patients with MYCN non amplified and MYC high [OS: HR 11.9 95%CI 2.3-62.4, p=0.003[Log-rank test]; EFS: HR 7.2 95%CI 1.6-33.4, p=0.01[Log-rank test]). A statistically significant correlation between NCL and MYCN, MYC, and TERT was found in independent datasets (MultiPlatform786 (n=786) and Agilent394 (n=394). Gene set enrichment analysis revealed a statisticallysignificant positive enrichment of MYC target genes and genes involved in telomerase maintenance. INTERPRETATION: NCL is a novel and independent (adjusting for age, INSS stage, and MYCN status) prognostic marker for NB. FUNDING: IMH-EuroNanoMed II-2015 and AIRC-IG.


Subject(s)
Neuroblastoma , Infant , Humans , Prognosis , N-Myc Proto-Oncogene Protein , Retrospective Studies , Neoplasm Staging , Neuroblastoma/diagnosis , Neuroblastoma/genetics , Neuroblastoma/pathology , Nucleolin
10.
Life (Basel) ; 12(7)2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35888078

ABSTRACT

An increasing amount of evidence indicates the critical role of the NSD1 gene in Sotos syndrome (SoS), a rare genetic disease, and in tumors. Molecular mechanisms affected by NSD1 mutations are largely uncharacterized. In order to assess the impact of NSD1 haploinsufficiency in the pathogenesis of SoS, we analyzed the gene expression profile of fibroblasts isolated from the skin samples of 15 SoS patients and of 5 healthy parents. We identified seven differentially expressed genes and five differentially expressed noncoding RNAs. The most upregulated mRNA was stratifin (SFN) (fold change, 3.9, Benjamini−Hochberg corrected p < 0.05), and the most downregulated mRNA was goosecoid homeobox (GSC) (fold change, 3.9, Benjamini−Hochberg corrected p < 0.05). The most upregulated lncRNA was lnc-C2orf84-1 (fold change, 4.28, Benjamini−Hochberg corrected p < 0.001), and the most downregulated lncRNA was Inc-C15orf57 (fold change, −0.7, Benjamini−Hochberg corrected p < 0.05). A gene set enrichment analysis reported the enrichment of genes involved in the KRAS and E2F signaling pathways, splicing regulation and cell cycle G2/M checkpoints. Our results suggest that NSD1 is involved in cell cycle regulation and that its mutation can induce the down-expression of genes involved in tumoral and neoplastic differentiation. The results contribute to defining the role of NSD1 in fibroblasts for the prevention, diagnosis and control of SoS.

11.
J Allergy Clin Immunol ; 150(4): 796-805, 2022 10.
Article in English | MEDLINE | ID: mdl-35835255

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may result in a severe pneumonia associated with elevation of blood inflammatory parameters, reminiscent of cytokine storm syndrome. Steroidal anti-inflammatory therapies have shown efficacy in reducing mortality in critically ill patients; however, the mechanisms by which SARS-CoV-2 triggers such an extensive inflammation remain unexplained. OBJECTIVES: To dissect the mechanisms underlying SARS-CoV-2-associated inflammation in patients with severe coronavirus disease 2019 (COVID-19), we studied the role of IL-1ß, a pivotal cytokine driving inflammatory phenotypes, whose maturation and secretion are regulated by inflammasomes. METHODS: We analyzed nod-like receptor protein 3 pathway activation by means of confocal microscopy, plasma cytokine measurement, cytokine secretion following in vitro stimulation of blood circulating monocytes, and whole-blood RNA sequencing. The role of open reading frame 3a SARS-CoV-2 protein was assessed by confocal microscopy analysis following nucleofection of a monocytic cell line. RESULTS: We found that circulating monocytes from patients with COVID-19 display ASC (adaptor molecule apoptotic speck like protein-containing a CARD) specks that colocalize with nod-like receptor protein 3 inflammasome and spontaneously secrete IL-1ß in vitro. This spontaneous activation reverts following patient's treatment with the IL-1 receptor antagonist anakinra. Transfection of a monocytic cell line with cDNA coding for the ORF3a SARS-CoV-2 protein resulted in ASC speck formation. CONCLUSIONS: These results provide further evidence that IL-1ß targeting could represent an effective strategy in this disease and suggest a mechanistic explanation for the strong inflammatory manifestations associated with COVID-19.


Subject(s)
COVID-19 Drug Treatment , Inflammasomes , Anti-Inflammatory Agents , Cytokine Release Syndrome/drug therapy , Cytokines/metabolism , DNA, Complementary , Humans , Inflammasomes/metabolism , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Receptors, Interleukin-1 , SARS-CoV-2
12.
Pediatr Blood Cancer ; 69(10): e29800, 2022 10.
Article in English | MEDLINE | ID: mdl-35652628

ABSTRACT

BACKGROUND: Neuroblastoma (NB) is an enigmatic childhood malignancy characterised by a wide range of clinical behaviour. Many potential oncogenes for NB have recently been identified. Among them, E2 transcription factor 3 (E2F3) expression was associated with a poor survival in 134 stage 4S patients, but evidence for other stage groups remains poorly investigated. METHODS: We have analysed the expression of E2F3 gene from a database of 786 NB samples. Overall and event-free survivals (EFS) were assessed by the Kaplan-Meier method, splitting the data on the median and tertile expression values. The Cox model was applied to control for the confounding by stage, age and MYCN amplification. Validation was performed by an in silico analysis of an independent cohort of 283 NB patients. Furthermore, an immunofluorescence analysis on 48 formalin-fixed, paraffin-embedded NB specimens was also performed. RESULTS: E2F3 overexpression was associated with a poor survival (EFS = 84%, 95% CI: 79%-95%, for low expression levels; EFS = 62%, 95% CI: 56%-68% for middle levels; EFS = 30%, 95% CI: 24%-36%, for high levels, p < .001). This association was confirmed in multivariable analysis and was more evident in patients with MYCN not-amplified and localised stages. Immunofluorescence results and the validation on an independent cohort of NB primary samples confirmed these findings. CONCLUSIONS: E2F3 is a new potential prognostic marker in NB with favourable characteristics at diagnosis. Further studies are needed to elucidate the potential role of E2F3 in NB oncogenesis and progression, in order to identify new targets for therapeutic interventions.


Subject(s)
Gene Amplification , Neuroblastoma , Child , E2F3 Transcription Factor/genetics , E2F3 Transcription Factor/metabolism , Gene Expression , Humans , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/pathology , Prognosis
13.
Front Oncol ; 12: 845936, 2022.
Article in English | MEDLINE | ID: mdl-35756625

ABSTRACT

Neuroblastoma (NB) is the most common extracranial malignant tumor in children. Although the survival rate of NB has improved over the years, the outcome of NB still remains poor for over 30% of cases. A more accurate risk stratification remains a key point in the study of NB and the availability of novel prognostic biomarkers of "high-risk" at diagnosis could help improving patient stratification and predicting outcome. In this paper we show a biomarker discovery approach applied to the plasma of 172 NB patients. Plasma samples from a first cohort of NB patients and age-matched healthy controls were used for untargeted metabolomics analysis based on high-resolution mass spectrometry (HRMS). Differential expression analysis highlighted a number of metabolites annotated with a high degree of identification. Among them, 3-O-methyldopa (3-O-MD) was validated in a second cohort of NB patients using a targeted metabolite profiling approach and its prognostic potential was also analyzed by survival analysis on patients with 3 years follow-up. High expression of 3-O-MD was associated with worse prognosis in the subset of patients with stage M tumor (log-rank p < 0.05) and, among them, it was confirmed as a prognostic factor able to stratify high-risk patients older than 18 months. 3-O-MD might be thus considered as a novel prognostic biomarker of NB eligible to be included at diagnosis among catecholamine metabolite panels in prospective clinical studies. Further studies are warranted to exploit other potential biomarkers highlighted using our approach.

14.
EBioMedicine ; 76: 103851, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35151110

ABSTRACT

BACKGROUND: Celiac Disease (CD) is a multifactorial autoimmune enteropathy (with a prevalence of approximately 1% worldwide) that exhibits a wide spectrum of clinical, serological and histological manifestations. For the diagnosis of paediatric CD, the gold standard is the combination of serological tests (with high TGA-IgA values greater than 10 times the upper limit of normal) and duodenal biopsy (with a positive TGA-IgA but low titer). Therefore, a diagnostic test that totally excludes an invasive approach has not been discovered so far and the discovery of novel biological markers would represent an undoubted advantage for the diagnosis of CD and prognostic evaluation. MicroRNAs (miRNAs), small non-coding RNAs (18-22 nucleotides) that regulate gene expression at post-transcriptional level and play important roles in many biological processes, represent a novel class of potential disease biomarkers. Their presence in biological fluids (i.e., serum, plasma, saliva, urine) provides the opportunity to employ circulating miRNAs as novel non-invasive biomarkers. METHODS: In our prospective observational study, we examined the expression of circulating miRNAs in a cohort of CD patients (both at diagnosis and on gluten-free diet, respectively referred as CD and GFD) compared to healthy controls. By small RNA-Seq we discovered a set of circulating miRNAs that were further validated by qPCR with specific assays. FINDINGS: We found that out of the 13 miRNAs able to discriminate the three groups (i.e., CD, GFD and controls), three of them, namely miR-192-5p, miR-215-5p and miR-125b-5p (alone or in combination), were able to discriminate these three groups with high accuracy and specificity. INTERPRETATION: Our conclusions emphasize that these circulating miRNAs can be employed not only for the diagnosis of CD patients with a low TGA-IgA titer but also to monitor the adherence to a gluten-free diet by CD patients. In conclusion, we suggest the use of the circulating miRNAs identified in this work as a novel diagnostic and follow-up tool for paediatric CD. FUNDING: This work was supported by Fondazione Celiachia Onlus (FC) Grant n° 018/FC/2013 and by Italian Ministry of Health (Ricerca Corrente).


Subject(s)
Celiac Disease , Circulating MicroRNA , MicroRNAs , Biomarkers , Celiac Disease/diagnosis , Celiac Disease/genetics , Child , Diet, Gluten-Free , Humans , MicroRNAs/genetics
15.
BMC Bioinformatics ; 22(Suppl 15): 544, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34749633

ABSTRACT

BACKGROUND: Improving the availability and usability of data and analytical tools is a critical precondition for further advancing modern biological and biomedical research. For instance, one of the many ramifications of the COVID-19 global pandemic has been to make even more evident the importance of having bioinformatics tools and data readily actionable by researchers through convenient access points and supported by adequate IT infrastructures. One of the most successful efforts in improving the availability and usability of bioinformatics tools and data is represented by the Galaxy workflow manager and its thriving community. In 2020 we introduced Laniakea, a software platform conceived to streamline the configuration and deployment of "on-demand" Galaxy instances over the cloud. By facilitating the set-up and configuration of Galaxy web servers, Laniakea provides researchers with a powerful and highly customisable platform for executing complex bioinformatics analyses. The system can be accessed through a dedicated and user-friendly web interface that allows the Galaxy web server's initial configuration and deployment. RESULTS: "Laniakea@ReCaS", the first instance of a Laniakea-based service, is managed by ELIXIR-IT and was officially launched in February 2020, after about one year of development and testing that involved several users. Researchers can request access to Laniakea@ReCaS through an open-ended call for use-cases. Ten project proposals have been accepted since then, totalling 18 Galaxy on-demand virtual servers that employ ~ 100 CPUs, ~ 250 GB of RAM and ~ 5 TB of storage and serve several different communities and purposes. Herein, we present eight use cases demonstrating the versatility of the platform. CONCLUSIONS: During this first year of activity, the Laniakea-based service emerged as a flexible platform that facilitated the rapid development of bioinformatics tools, the efficient delivery of training activities, and the provision of public bioinformatics services in different settings, including food safety and clinical research. Laniakea@ReCaS provides a proof of concept of how enabling access to appropriate, reliable IT resources and ready-to-use bioinformatics tools can considerably streamline researchers' work.


Subject(s)
COVID-19 , Cloud Computing , Computational Biology , Humans , SARS-CoV-2 , Software
16.
Cancers (Basel) ; 13(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34830942

ABSTRACT

We observed a case of high-risk neuroblastoma (NB) carried by a 28-month-old girl, displaying metastatic disease and a rapid decline of clinical conditions. By array-CGH analysis of the tumor tissue and of the metastatic bone marrow aspirate cells, we found a high-grade amplification of six regions besides MYCN on bands 2p25.3-p24.3. The genes involved in these amplifications were MYT1L, TSSC1, CMPK2, RSAD2, RNF144A, GREB1, NTSR2, LPIN1, NBAS, and the two intergenic non-protein coding RNAs LOC730811 and LOC339788. We investigated if these DNA co-amplifications may have an effect on enhancing tumor aggressiveness. We evaluated the association between the high expression of the amplified genes and NB patient's outcome using the integration of gene expression data of 786 NB samples profiled with different public platforms from patients with at least five-year follow-up. NB patients with high expression of the TSSC1 gene were associated with a reduced survival rate. Immunofluorescence staining on primary tumor tissues confirmed that the TSSC1 protein expression was high in the relapsed or dead stage 4 cases, but it was generally low in NB patients in complete remission. TSSC1 appears as a putative new oncogene in NB.

17.
Int J Mol Sci ; 22(17)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34502510

ABSTRACT

Vitamin D showed a protective effect on intervertebral disc degeneration (IDD) although conflicting evidence is reported. An explanation could be due to the presence of the FokI functional variant in the vitamin D receptor (VDR), observed as associated with spine pathologies. The present study was aimed at investigating-through high-throughput gene and protein analysis-the response of human disc cells to vitamin D, depending on the VDR FokI variants. The presence of FokI VDR polymorphism was determined in disc cells from patients with discopathy. 1,25(OH)2D3 was administered to the cells with or without interleukin 1 beta (IL-1ß). Microarray, protein arrays, and multiplex protein analysis were performed. In both FokI genotypes (FF and Ff), vitamin D upregulated metabolic genes of collagen. In FF cells, the hormone promoted the matrix proteins synthesis and a downregulation of enzymes involved in matrix catabolism, whereas Ff cells behaved oppositely. In FF cells, inflammation seems to hamper the synthetic activity mediated by vitamin D. Angiogenic markers were upregulated in FF cells, along with hypertrophic markers, some of them upregulated also in Ff cells after vitamin D treatment. Higher inflammatory protein modulation after vitamin D treatment was observed in inflammatory condition. These findings would help to clarify the clinical potential of vitamin D supplementation in patients affected by IDD.


Subject(s)
Intervertebral Disc/drug effects , Receptors, Calcitriol/genetics , Vitamin D/pharmacology , Adult , Female , Genotype , High-Throughput Nucleotide Sequencing/methods , Humans , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/genetics , Middle Aged , Polymorphism, Single Nucleotide/genetics , Proteomics/methods , Receptors, Calcitriol/metabolism , Vitamin D/metabolism , Vitamins/pharmacology
18.
Cancers (Basel) ; 13(11)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199959

ABSTRACT

Neuroblastoma (NB) is one of the deadliest pediatric cancers, accounting for 15% of deaths in childhood. Hypoxia is a condition of low oxygen tension occurring in solid tumors and has an unfavorable prognostic factor for NB. In the present study, we aimed to identify novel promising drugs for NB treatment. Connectivity Map (CMap), an online resource for drug repurposing, was used to identify connections between hypoxia-modulated genes in NB tumors and compounds. Two sets of 34 and 21 genes up- and down-regulated between hypoxic and normoxic primary NB tumors, respectively, were analyzed with CMap. The analysis reported a significant negative connectivity score across nine cell lines for 19 compounds mainly belonging to the class of PI3K/Akt/mTOR inhibitors. The gene expression profiles of NB cells cultured under hypoxic conditions and treated with the mTORC complex inhibitor PP242, referred to as the Mohlin dataset, was used to validate the CMap findings. A heat map representation of hypoxia-modulated genes in the Mohlin dataset and the gene set enrichment analysis (GSEA) showed an opposite regulation of these genes in the set of NB cells treated with the mTORC inhibitor PP242. In conclusion, our analysis identified inhibitors of the PI3K/Akt/mTOR signaling pathway as novel candidate compounds to treat NB patients with hypoxic tumors and a poor prognosis.

19.
J Immunother Cancer ; 9(4)2021 04.
Article in English | MEDLINE | ID: mdl-33795387

ABSTRACT

BACKGROUND: High-risk neuroblastomas (HR-NBs) are rare, aggressive pediatric cancers characterized by resistance to therapy and relapse in more than 30% of cases, despite using an aggressive therapeutic protocol including targeting of GD2. The mechanisms responsible for therapy resistance are unclear and might include the presence of GD2neg/low NB variants and/or the expression of immune checkpoint ligands such as B7-H3. METHOD: Here, we describe a multiparametric flow cytometry (MFC) combining the acquisition of 106 nucleated singlets, Syto16pos CD45neg CD56pos cells, and the analysis of GD2 and B7-H3 surface expression. 41 bone marrow (BM) aspirates from 25 patients with NB, at the onset or relapse, are analyzed, comparing results with cytomorphological analysis (CA) and/or immunohistochemistry (IHC). Spike in experiments assesses the sensitivity of MFC. Kaplan-Meier analysis on 498 primary NBs selects novel prognostic markers possibly integrating the MFC panel. RESULTS: No false positive are detected, and MFC shows high sensitivity (0.0005%). Optimized MFC identifies CD45negCD56pos NB cells in 11 out of 12 (91.6%) of BM indicated as infiltrated by CA, 7 of which coexpress high levels of GD2 and B7-H3. MFC detects CD45negCD56posGD2neg/low NB variants expressing high surface levels of B7-H3 in two patients with HR-NB (stage M) diagnosed at 53 and 139 months of age. One of them has a non-MYCN amplified tumor with unusual THpos PHOX2Bneg phenotype, which relapsed 141 months post-diagnosis with BM infiltration and a humerus lesion. All GD2neg/low NB variants are detected in patients at relapse. Kaplan-Meier analysis highlights an interesting dichotomous prognostic value of MML5, ULBPs, PVR, B7-H6, and CD47, ligands involved in NB recognition by the immune system. CONCLUSIONS: Our study validates a sensitive MFC analysis providing information on GD2 and B7-H3 surface expression and allowing fast, specific and sensitive evaluation of BM tumor burden. With other routinely used diagnostic and prognostic tools, MFC can improve diagnosis, prognosis, orienting novel personalized treatments in patients with GD2low/neg NB, who might benefit from innovative therapies combining B7-H3 targeting.


Subject(s)
B7 Antigens/analysis , Biomarkers, Tumor/analysis , Flow Cytometry , Gangliosides/analysis , Neuroblastoma/immunology , Adolescent , Cell Line, Tumor , Child , Child, Preschool , Humans , Infant , Male , Neuroblastoma/diagnosis , Neuroblastoma/mortality , Neuroblastoma/therapy , Predictive Value of Tests , Progression-Free Survival , Reproducibility of Results , Time Factors
20.
Int J Mol Sci ; 23(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35008754

ABSTRACT

Glycogen storage disease type Ia (GSDIa) is an inherited metabolic disorder caused by mutations in the enzyme glucose-6-phosphatase-α (G6Pase-α). Affected individuals develop renal and liver complications, including the development of hepatocellular adenoma/carcinoma and kidney failure. The purpose of this study was to identify potential biomarkers of the evolution of the disease in GSDIa patients. To this end, we analyzed the expression of exosomal microRNAs (Exo-miRs) in the plasma exosomes of 45 patients aged 6 to 63 years. Plasma from age-matched normal individuals were used as controls. We found that the altered expression of several Exo-miRs correlates with the pathologic state of the patients and might help to monitor the progression of the disease and the development of late GSDIa-associated complications.


Subject(s)
Exosomes/genetics , Glycogen Storage Disease Type I/genetics , Kidney Diseases/genetics , Liver/injuries , Liver/metabolism , MicroRNAs/genetics , Adolescent , Adult , Age Factors , Animals , Biomarkers/metabolism , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Exosomes/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Glucose-6-Phosphatase/metabolism , Glycogen Storage Disease Type I/blood , Glycogen Storage Disease Type I/pathology , Humans , Kidney Diseases/blood , Kidney Diseases/pathology , Male , Mice , MicroRNAs/metabolism , Middle Aged , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...