Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Nanoscale ; 14(12): 4654-4670, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35262128

ABSTRACT

Anti-(ds)-DNA antibodies are the serological hallmark of Systemic Lupus Erythematosus (SLE). They assemble in the bloodstream with (ds)-DNA, forming immunocomplexes, which spread all over the body causing, among the other symptoms, lupic glomerulonephritis. Pathological manifestations of the disease may be reduced by destabilizing or inhibiting the formation of the immunocomplexes. In this respect, glycodendrimers showed peculiar interacting abilities towards this kind of biomolecule. Various generations of open-shell maltose-decorated poly(amidoamine) (PAMAM) and poly(propyleneimine) (PPI) dendrimers and two oligopeptides with different polyethylene glycol units were synthesized and characterized, and then tested for their anti-SLE activity. The activity of glycodendrimers and oligopeptides was evaluated in human plasma from patients with SLE, compared to healthy plasma, by means of an enzyme-linked immunosorbent assay (ELISA), and electron paramagnetic resonance (EPR) characterization using spin-label and spin-probe techniques. Different strategies for the immunocomplex formation were tested. The results show that both kinds of glycodendrimers and oligopeptides inhibited the formation of immunocomplexes. Also, a partial breakdown of preformed immunocomplexes was observed. Both ELISA and EPR analyses indicated a better activity of glycodendrimers compared to oligopeptides, the 3rd generation PPI dendrimer being the most promising against SLE. This study highlights the possibility to develop a new class of dendritic therapeutics for the treatment of Lupus in pre-clinical studies.


Subject(s)
Dendrimers , Lupus Erythematosus, Systemic , DNA , Dendrimers/chemistry , Dendrimers/pharmacology , Enzyme-Linked Immunosorbent Assay , Humans , Lupus Erythematosus, Systemic/drug therapy , Maltose/chemistry , Maltose/pharmacology , Oligopeptides/pharmacology
2.
Phys Chem Chem Phys ; 24(10): 6011-6025, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35199803

ABSTRACT

Despite the array of applications for cationic polythiophenes (CPTs), there is still a need for structure-function guidelines and mechanistic understanding of their solution- and solid-state properties. This work presents a solution- and solid-state investigation of the effect of O-alkylation proximity on the hydrogen bonding (H-bonding) capabilities of alkoxy-CPTs, based on comparing an imidazolium alkoxy CPT with strong cation-pi, pi+ and positive charge-assisted hydrogen bonding (+CAHB) capabilities (PIMa), with two isothiouronium alkoxy CPTs with two-point +CAHB capabilities (PT1 & PT2), which have short and long alkoxy side chains, respectively. Our results show that a closer proximity of O-alkylation strengthens the +CAHB capabilities of PT1: in aqueous solutions, PT2 aggregates have a stronger interaction with cationic EPR spin probes than aggregates of PIMa and PT1, which in turn show a similar extent of repulsion towards the cationic spin probes. In solid-state, atomic force microscopy (AFM) shows that PIMa generates dendritic structures onto mica, with features of diffusion-limited aggregation (DLA), indicating strong interactions with the anionic substrate due to a high configurational entropy during spreading, regardless of being drop-casted from water or 1,4-dioxane-water (W-DI), despite the latter disturbing H-bonding due to selective solvation. PT1 is also capable of generating dendritic structures resembling ballistic aggregation (BA). However, this occurs only when casting from water, since W-DI generates island-like aggregates resembling attachment limited aggregation (ALA), which is the morphology generated by PT2 regardless of the solvent. Finally, spin-coated films of PIMa and PT1 show similar dispersivity of the surface free energy (SFE), which in turn is larger than that in PT2 films, which are also more affected when casted from W-DI, presenting much larger decreases of dispersivity. These results constitute a novel empirical structure-function guideline that could be useful for optimal design and/or processing of alkoxy CPTs. For example, dendritic patterns have recently gained attention since the colloidal droplet drying is related to engineering applications including inkjet printing, biosensing, and functional material design, while the SFE is relevant for opto- and bio-electronic applications of conjugated polyelectrolytes (CPEs). This information could also be useful when analyzing previous results obtained from alkoxy CPTs with different side chain lengths.

3.
Chemosphere ; 291(Pt 3): 133067, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34838598

ABSTRACT

This study explored the morphological, mineralogical, and physico-chemical features of carcinogenic erionite and other possibly hazardous zeolites, such as mesolite and thomsonite, while also investigating the interacting capability of the mineral surface at the liquid/solid interface. Extremely fibrous erionite is K+ and Ca2+-rich and shows the highest Si/Al ratio (3.38) and specific surface area (8.14 m2/g). Fibrous mesolite is Na+ and Ca2+-rich and displays both a lower Si/Al ratio (1.56) and a smaller specific surface area (1.56 m2/g). The thomsonite composition shows the lowest values of Si/Al ratio (1.23) and specific surface area (0.38 m2/g). Electron paramagnetic resonance data from selected spin probes reveal that erionite has a homogeneous site distribution and interacts well with all spin probes. The surfaces of mesolite and thomsonite are less homogeneous and closer polar sites were found through consequent interaction with the probes. The mesolite surface can also clearly interact but with a lower strength and may represent a potential health hazard for humans, though with a lower degree if compared to erionite. The thomsonite surface is not inert and interacts with the probes with a low-grade capability. We can expect small fragments of thomsonite to interact with the biological environment, though with a low-grade intensity.


Subject(s)
Zeolites , Carcinogens , Electron Spin Resonance Spectroscopy , Humans
4.
Biol Chem ; 403(3): 345-360, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34883001

ABSTRACT

The activity and interacting ability of a polyamidoamine (PAMAM) dendrimer modified with 4-N-methylpiperazine-1,8-naphthalimide units (termed D) and complexed by Cu(ii) ions, towards healthy and cancer cells were studied. Comparative electron paramagnetic resonance (EPR) studies of the Cu(ii)-D complex are presented: coordination mode, chemical structure, flexibility and stability of these complexes, in the absence and presence of myeloid cancer cells and peripheral blood mononuclear cells (PBMC). The interactions of Cu(ii) ions in the biological media at different equilibrium times were studied, highlighting different stability and interacting conditions with the cells. Furthermore, flow cytometry and confocal analysis, trace the peculiar properties of the dendrimers in PBMC and U937 cells. Indeed, a new probe (Fly) was used as a potential fluorescent tool for biological imaging of Cu(ii). The study highlights that dendrimer and, mainly, the Cu(ii) metallodendrimer are cytotoxic agents for the cells, specifically for U937 tumor cells, inducing mitochondrial dysfunction, ROS increase and lysosome involvement. The metallodendrimer shows antitumor selectivity, fewer affecting healthy PBMC, inducing a massive apoptotic cell death on U937 cells, in line with the high stability of this complex, as verified by EPR studies. The results underline the potentiality of this metallodendrimer to be used as anticancer drug.


Subject(s)
Antineoplastic Agents , Dendrimers , Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Dendrimers/chemistry , Dendrimers/metabolism , Dendrimers/pharmacology , Electron Spin Resonance Spectroscopy , Humans , Leukocytes, Mononuclear , Naphthalimides/pharmacology , Polyamines
5.
Langmuir ; 36(43): 12816-12829, 2020 11 03.
Article in English | MEDLINE | ID: mdl-32993292

ABSTRACT

Copper (Cu)(II) ions, mainly an excess amount, play a negative role in the course of several diseases, like cancers, neurodegenerative diseases, and the so-called Wilson disease. On the contrary, Cu(II) ions are also capable of improving anticancer drug efficiency. For this reason, it is of great interest to study the interacting ability of Cu(II)-nanodrug and Cu(II)-nanocarrier complexes with cell membranes for their potential use as nanotherapeutics. In this study, the complex interaction between 1,4,7,10-tetraazacyclododecan-N,N',N'',N'''-tetraacetic acid (DOTA)-functionalized poly(propyleneimine) (PPI) glycodendrimers and Cu(II) ions and/or neutral and anionic lipid membrane models using different liposomes is described. These interactions were investigated via dynamic light scattering (DLS), ζ-potential (ZP), electron paramagnetic resonance (EPR), fluorescence anisotropy, and cryogenic transmission electron microscopy (cryo-TEM). Structural and dynamic information about the PPI glycodendrimer and its Cu(II) complexes toward liposomes was obtained via EPR. At the binding site Cu-N2O2 coordination prevails, while at the external interface, this coordination partially weakens due to competitive dendrimer-liposome interactions, with only small liposome structural perturbation. Fluorescence anisotropy was used to evaluate the membrane fluidity of both the hydrophobic and hydrophilic parts of the lipid bilayer, while DLS and ZP allowed us to determine the distribution profile of the nanoparticle (PPI glycodendrimer and liposomes) size and surface charge, respectively. From this multitechnique approach, it is deduced that DOTA-PPI glycodendrimers selectively extract Cu(II) ions from the bioenvironment, while these complexes interact with the liposome surface, preferentially with even more negatively charged liposomes. However, these complexes are not able to cross the cell membrane model and poorly perturb the membrane structure, showing their potential for biomedical use.


Subject(s)
Liposomes , Membrane Fluidity , Electron Spin Resonance Spectroscopy , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers
6.
Mol Pharm ; 17(7): 2691-2702, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32484691

ABSTRACT

Copper(II) carbosilane metallodendrimers are promising nanosized anticancer metallodrugs. The precise control on their design enables an accurate structure-to-activity study. We hypothesized that different structural features, such as the dendrimer generation and metal counterion, modulate the interaction with tumor cells, and subsequently, the effectivity and selectivity of the therapy. A computer-aided analysis of the electron paramagnetic resonance (EPR) spectra allowed us to obtain dynamical and structural details on the interactions over time between the dendrimers and the cells, the myeloid U937 tumor cells and peripheral blood mononuclear cells (PBMC). The intracellular fate of the metallodendrimers was studied through a complete in vitro evaluation, including cytotoxicity, cytostaticity, and sublethal effects regarding mitochondria function, lysosomal compartments, and autophagic organelle involvement. EPR results confirmed a higher membrane stabilization for chloride dendrimers and low generation complexes, which ultimately influence the metallodrug uptake and intracellular fate. The in vitro evaluation revealed that Cu(II) metallodendrimers are cytostatic and moderate cytotoxic agents for U937 tumor cells, inducing death processes through the mitochondria-lysosome axis as well as autophagic vacuole formation, while barely affecting healthy monocytes. The study provided valuable insight into the mechanism of action of these nanosized metallodrugs and relevant structural parameters affecting the activity.


Subject(s)
Copper/chemistry , Cytotoxins/administration & dosage , Dendrimers/administration & dosage , Electron Spin Resonance Spectroscopy/methods , Leukocytes, Mononuclear/drug effects , Mitochondria/drug effects , Silanes/chemistry , Autophagy , Cell Line, Tumor , Cytotoxins/chemistry , Cytotoxins/toxicity , Dendrimers/chemistry , Dendrimers/metabolism , Dendrimers/toxicity , Humans , Lysosomes/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria/physiology
7.
Langmuir ; 36(9): 2278-2290, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32027512

ABSTRACT

Cationic imidazolium-functionalized polythiophenes with single- or double-methylation of the imidazolium ring were used to study the impact of imidazolium-methylation on (i) the solution concentration-driven aggregation in the presence of paramagnetic probes with different ionic and hydrophobic constituents and (ii) their surface free energy (SFE) as spin-coated films deposited on plasma-activated glass. Electron paramagnetic resonance spectroscopy shows that the differences in film structuration between the polymers with different methylations originate from the early stages of aggregation. In the solid state, higher degree of imidazolium-methylation generates smaller values of total SFE, γS, (by around 2 mN/m), which could be relevant in optoelectronic applications. Methylation also causes a decrease in the polar contribution of γS (γSp), suggesting that methylation decreases the polar nature of the imidazolium ring, probably due to the blocking of its H-bonding capabilities. The values of γS obtained in the present work are similar to the values obtained for doped films of neutral conjugated polymers, such as polyaniline, poly(3-hexylthiophene), and polypyrrole. However, imidazolium-polythiophenes generate films with a larger predominance of the dispersive component of γS (γSd), probably due to the motion restriction in the ionic functionalities in a conjugated polyelectrolyte, in comparison to regular dopants. The presence of 1,4-dioxane increases γSp, especially, in the polymer with larger imidazolium-methylation (and therefore unable to interact through H-bonding), probably by a decrease of the imidazolium-glass interactions. Singly-methylated imidazolium polythiophenes have been applied as electrode selective ("buffer") interlayers in conventional and inverted organic solar cells, improving their performance. However, clear structure-function guidelines are still needed for designing high-performance polythiophene-based interlayer materials. Therefore, the information reported in this work could be useful for such applications.

8.
Molecules ; 25(1)2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31947792

ABSTRACT

Chlorophyll a derivatives were integrated in "all solid-state" dye sensitized solar cells (DSSCs) with a mesoporous TiO2 electrode and 2',2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene as the hole-transport material. Despite modest power conversion efficiencies (PCEs) between 0.26% and 0.55% achieved for these chlorin dyes, a systematic investigation was carried out in order to elucidate their main limitations. To provide a comprehensive understanding of the parameters (structure, nature of the anchoring group, adsorption …) and their relationship with the PCEs, density functional theory (DFT) calculations, optical and photovoltaic studies and electron paramagnetic resonance analysis exploiting the 4-carboxy-TEMPO spin probe were combined. The recombination kinetics, the frontier molecular orbitals of these DSSCs and the adsorption efficiency onto the TiO2 surface were found to be the key parameters that govern their photovoltaic response.


Subject(s)
Chlorophyll/chemistry , Solar Energy , Titanium/chemistry , Porosity
9.
Chemosphere ; 238: 124560, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31437632

ABSTRACT

Plastics are the most abundant marine debris globally dispersed in the oceans and its production is rising with documented negative impacts in marine ecosystems. However, the chemical-physical and biological interactions occurring between plastic and planktonic communities of different types of microorganisms are poorly understood. In these respects, it is of paramount importance to understand, on a molecular level on the surface, what happens to plastic fragments when dispersed in the ocean and directly interacting with phytoplankton assemblages. This study presents a computer-aided analysis of electron paramagnetic resonance (EPR) spectra of selected spin probes able to enter the phyoplanktonic cell interface and interact with the plastic surface. Two different marine phytoplankton species were analyzed, such as the diatom Skeletonema marinoi and dinoflagellate Lingulodinium polyedrum, in absence and presence of polyethylene terephthalate (PET) fragments in synthetic seawater (ASPM), in order to in-situ characterize the interactions occurring between the microalgal cells and plastic surfaces. The analysis was performed at increasing incubation times. The cellular growth and adhesion rates of microalgae in batch culture medium and on the plastic fragments were also evaluated. The data agreed with the EPR results, which showed a significant difference in terms of surface properties between the diatom and dinoflagellate species. Low-polar interactions of lipid aggregates with the plastic surface sites were mainly responsible for the cell-plastic adhesion by S. marinoi, which is exponentially growing on the plastic surface over the incubation time.


Subject(s)
Diatoms/metabolism , Dinoflagellida/metabolism , Microalgae/growth & development , Phytoplankton/metabolism , Plastics/metabolism , Polyethylene Terephthalates/metabolism , Ecosystem , Electron Spin Resonance Spectroscopy , Microalgae/metabolism , Oceans and Seas , Seawater/chemistry , Waste Products/analysis
10.
Biomolecules ; 9(10)2019 09 27.
Article in English | MEDLINE | ID: mdl-31569790

ABSTRACT

Dendrimers exhibit unique interactions with cell membranes, arising from their nanometric size and high surface area. To a great extent, these interactions define their biological activity and can be reported in situ by spin-labelling techniques. Schiff-base carbosilane ruthenium (II) metallodendrimers are promising antitumor agents with a mechanism of action yet to explore. In order to study their in situ interactions with model cell membranes occurring at a molecular level, namely cetyltrimethylammonium bromide micelles (CTAB) and lecithin liposomes (LEC), electron paramagnetic resonance (EPR) was selected. Both a spin probe, 4-(N,N-dimethyl-N-dodecyl)ammonium-2,2,6,6-tetramethylpiperidine-1-oxyl bromide (CAT12), able to enter the model membranes, and a spin label, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) covalently attached at newly synthesized heterofunctional dendrimers, were used to provide complementary information on the dendrimer-membrane interactions. The computer-aided EPR analysis demonstrated a good agreement between the results obtained for the spin probe and spin label experiments. Both points of view suggested the partial insertion of the dendrimer surface groups into the surfactant aggregates, mainly CTAB micelles, and the occurrence of both polar and hydrophobic interactions, while dendrimer-LEC interactions involved more polar interactions between surface groups. We found out that subtle changes in the dendrimer structure greatly modified their interacting abilities and, subsequently, their anticancer activity.


Subject(s)
Cell Membrane/chemistry , Dendrimers/chemistry , Organometallic Compounds/chemistry , Ruthenium/chemistry , Silanes/chemistry , Spin Labels , Cetrimonium/chemistry , Electron Spin Resonance Spectroscopy , Hydrophobic and Hydrophilic Interactions , Lecithins/chemistry , Liposomes/chemistry , Micelles , Models, Molecular , Surface Properties
11.
Nanoscale ; 11(28): 13330-13342, 2019 Jul 28.
Article in English | MEDLINE | ID: mdl-31271405

ABSTRACT

Current cancer therapies present serious drawbacks including severe side-effects and development of drug resistance. Strategies based on nanosized metallodrugs combine the structural diversity and non-classical modes of action of metal complexes with the selectivity arising from the unique interaction of nanoparticles with biological membranes. A new family of water-soluble copper(ii) carbosilane metallodendrimers was synthesized and characterized as a nanotechnological alternative to current therapies. The interactions occurring over time between the dendrimers, at different generations (G0 to G2) and with different Cu(ii) counter-ions (nitrate vs. chloride), and cell-membrane models (cethyl-trimethylammonium bromide (CTAB) micelles and lecithin liposomes) were investigated using a computer-aided analysis of the electron paramagnetic resonance (EPR) spectra. The EPR analysis provided structural and dynamical information on the systems indicating that the increase in generation and the change of the Cu(ii) contra-ion - from nitrate to chloride - produce an increased relative amount and strength of interaction of the dendrimer with the model membranes. Interestingly, the stabilization effect produced a lower toxicity towards cancer cells. The cytotoxic effect of Cu(ii) metallodendrimers was verified by an in vitro screening in a selection of tumor cell lines, revealing the impact of multivalency on the effectivity and selectivity of the metallodrugs. As a proof-of-concept, first-generation dendrimer G1-Cu(ONO2)2 was selected for in-depth in vitro and in vivo antitumor evaluation towards resistant prostate cancer. The Cu(ii)-metallodendrimers produced a significant tumor size reduction with no signs of toxicity during the experiment, confirming their promising potential as anticancer metallodrugs.


Subject(s)
Antineoplastic Agents , Cell Membrane , Copper , Dendrimers , Models, Biological , Neoplasms, Experimental , Silanes , Animals , Cell Membrane/metabolism , Cell Membrane/pathology , Copper/chemistry , Copper/pharmacology , Cytotoxins/chemistry , Cytotoxins/pharmacology , Dendrimers/chemistry , Dendrimers/pharmacology , Humans , MCF-7 Cells , Male , Mice , Mice, Nude , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , PC-3 Cells , Silanes/chemistry , Silanes/pharmacology , Xenograft Model Antitumor Assays
12.
Langmuir ; 34(32): 9424-9434, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30032619

ABSTRACT

Drug delivery is considered a mature scientific and technological platform for producing innovative medicines with nanosystems composed of intelligent bio-materials that carry active pharmaceutical ingredients forming advanced drug delivery nanosystems (aDDnSs). Shikonin and its enantiomer alkannin are natural products that have been extensively studied in vitro and in vivo for, among others, their antitumor activity, and various efforts have been made to prepare shikonin-loaded drug delivery systems. This study is focused on chimeric aDDnSs and specifically on liposomal formulations combining three lipids (egg-phosphatidylcholine; dipalmitoyl phosphatidylcholine; and distearoyl phosphatidylcholine) and a hyperbranched polymer (PFH-64-OH). Furthermore, PEGylated liposomal formulations of all samples were also prepared. Calorimetric techniques and electron paramagnetic resonance were used to explore and evaluate the interactions and stability of the liposomal formulations, showing that the presence of hyperbranched polymers promote the overall stability of the chimeric aDDnSs based on the drug release profile enhancement. Furthermore, results showed that polyethylene glycol enhances drug stabilization inside the liposomes, forming a stable and promising carrier for shikonin with improved characteristics.


Subject(s)
Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Naphthoquinones/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Calorimetry/methods , Electron Spin Resonance Spectroscopy/methods , Liposomes/chemistry , Particle Size , Phosphatidylcholines/chemistry , Polyethylene Glycols/chemistry , Static Electricity
13.
Colloids Surf B Biointerfaces ; 161: 620-627, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29156339

ABSTRACT

The silicon transport and use inside cells are key processes for understanding how diatoms metabolize this element in the silica biogenic cycle in the ocean. A spin-probe electron paramagnetic resonance (EPR) study over time helped to investigate the interacting properties and the internalization mechanisms of silicic acid from different silicon sources into the cells. Diatom cells were grown in media containing biogenic amorphous substrates, such as diatomaceous earth and sponge spicules, and crystalline sodium metasilicate. It was found that the amorphous biogenic silicon slowed down the internalization process probably due to formation of colloidal particles at the cell surface after silicic acid condensation. Weaker interactions occurred with sponge spicules silicon source if compared to the other sources. The EPR results were explained by analyzing transcript level changes of silicon transporters (SITs) and silaffins (SILs) in synchronized Thalassiosira pseudonana cultures over time. The results indicated that the transport role of SITs is minor for silicic acid from both biogenic and crystalline substrates, and the role of SIT3 is linked to the transport of silicon inside the cells, mainly in the presence of sponge spicules. SIL3 transcripts were expressed in the presence of all silicon sources, while SIL1 transcripts only with sponge spicules. The data suggest that the transport of silicic acid from various silicon sources in diatoms is based on different physico-chemical interactions with the cell surface.


Subject(s)
Colloids/chemistry , Diatoms/chemistry , Silicic Acid/chemistry , Silicon Dioxide/chemistry , Silicon/chemistry , Algal Proteins/genetics , Algal Proteins/metabolism , Colloids/metabolism , Diatoms/genetics , Diatoms/metabolism , Electron Spin Resonance Spectroscopy , Gene Expression , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Peptides/genetics , Peptides/metabolism , Silicic Acid/metabolism , Silicon/metabolism , Silicon Dioxide/metabolism , Surface Properties
14.
Colloids Surf B Biointerfaces ; 161: 147-155, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29073527

ABSTRACT

Human monocyte U937 cell line was used as a model to verify the toxicity of erionite and offretite asbestiform zeolite fibers. As a presumed non-toxic reference, a fibrous scolecite zeolite was also used. To analyze the process of fiber ingestion into cells and the cells-fibers interactions, a spin-probe electron paramagnetic resonance (EPR) analysis was performed supported by transmission electron microscopy (TEM) and cell viability measurements as a function of the incubation time. Erionite fibers were fast internalized in the membrane mainly as aggregates with radical-solution drops trapped inside, and were found in the cytosol and at the nucleus. In 24h, first erionite fibers rich in sodium and potassium, and then calcium-rich erionite fibers, induced cell necrosis. The offretite fibers formed rounding electron-dense filaments which transformed in curved filaments, initially perturbing the cell structure and interacting at the external surface more than erionite fibers. Such interactions probably diminished the toxic effect of offretite on cells. Interestingly, the presumed non-toxic scolecite fibers were partially internalized, inducing formation of swollen mitochondria and squared cells. Overall, the toxic effect of the fibrous zeolites was related to fiber morphology, chemical distribution of sites, structural variations and formation of aggregates.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Microscopy, Electron, Transmission/methods , Mitochondrial Swelling/drug effects , Zeolites/pharmacology , Cell Survival/drug effects , Humans , Monocytes/drug effects , Monocytes/metabolism , Monocytes/ultrastructure , U937 Cells , Zeolites/chemistry
15.
Langmuir ; 33(50): 14460-14471, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29200306

ABSTRACT

Toll-like receptors (TLRs) are pattern recognition transmembrane proteins that play an important role in innate immunity. In particular, TLR7 plays a role in detecting nucleic acids derived from viruses and bacteria. The huge number of pathologies in which TLR7 is involved has led to an increasing interest in developing new compounds targeting this protein. Several conjugation strategies were proposed for TLR7 agonists to increase the potency while maintaining a low toxicity. In this work, we focus the attention on two promising classes of TLR7 compounds derived from the same pharmacophore conjugated with phospholipid and polyethylene glycol (PEG). A multidisciplinary investigation has been carried out by molecular dynamics (MD), dynamic light scattering (DLS), electron paramagnetic resonance (EPR), and cytotoxicity assessment. DLS and MD indicated how only the phospholipid conjugation provides the compound abilities to self-assemble in an orderly fashion with a maximal pharmacophore exposition to the solvent. Further EPR and cytotoxicity experiments highlighted that phospholipid compounds organize in stable aggregates and well interact with TLR7, whereas PEG conjugation was characterized by poorly stable aggregates at the cells surface. The methodological framework proposed in this study may be used to investigate, at a molecular level, the interactions generally occurring between aggregated ligands, to be used as drugs, and protein receptors.


Subject(s)
Toll-Like Receptor 7/chemistry , Immunity, Innate , Ligands , Nucleic Acids , Viruses
16.
J Phys Chem B ; 121(46): 10498-10507, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29091451

ABSTRACT

Polyamidoamine (PAMAM) dendrimers at different generations (from G2 to G6) were functionalized with pyridine (Py) groups at the external surface, and their complexation behavior with Cu(II) at increasing molar ratios between the ions and the Py groups was analyzed in the absence and presence of reducing agents and a spin trap. These Cu(II)-dendrimer complexes may be used as antitumor and antiamyloidogenesis drugs, similarly to other Cu(II)-dendrimer complexes, and as biocatalysts. Indeed, they have revealed to selectively catalyze molecular oxygen reduction to generate reactive oxygen species (ROS). A computer-aided electron paramagnetic resonance (EPR) study of these complexes allowed us to identify different complexes by increasing the Cu(II)/Py molar ratio for the different generations. Binuclear EPR-silent complexes were formed at the highest generations. The differently complexed Cu(II) ions showed a different capability to be reduced, starting from the most exposed at the dendrimer surface bearing a stable Cu(II)-Py2 coordination. Cu(II)-G5 showed peculiar structural properties which probably favored its activity as biocatalyst. The spin trap was able to capture hydroxyl radicals, which became clearly EPR visible after all Cu(II) ions were reduced to Cu(I). This method may be used as a platform to study interactions of Cu(II) in nanosized macromolecules for biomedical purposes, mainly in biocatalysis involving redox reactions and formation of ROS.

17.
J Inorg Biochem ; 177: 211-218, 2017 12.
Article in English | MEDLINE | ID: mdl-29031179

ABSTRACT

A series of new organometallic carbosilane dendrimers functionalized with Copper(II) complex on the surface were synthesized and characterized as potential anticancer agents. These metallodendrimers were synthesized through the reaction of dendritic ligands containing N,N- and N,O- donor atoms able to act as chelating agents with CuCl2 as metallic ion precursor. The structural characterization of these complexes was addressed through the use of different analytical and spectroscopical techniques. Particularly, an electron paramagnetic resonance study was performed to corroborate the coordination properties of these dendritic ligands. A preliminary study was carried out to establish the cytotoxicity of the new synthesized compounds in human prostate (PC3) and human cervical (HeLa) cancer cell lines in order to evaluate their potential as anticancer agents and compare their activity with other copper or analogous ruthenium metallodendrimers.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Copper/chemistry , Dendrimers/pharmacology , Silanes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Dendrimers/chemical synthesis , Dendrimers/chemistry , Electron Spin Resonance Spectroscopy , Humans , Ligands , Silanes/chemical synthesis , Silanes/chemistry
18.
J Toxicol Environ Health A ; 80(3): 171-187, 2017.
Article in English | MEDLINE | ID: mdl-28277034

ABSTRACT

Different asbestiform zeolite fibers of the erionite (termed GF1 and MD8, demonstrated carcinogenic) and offretite (termed BV12, suspected carcinogenic) families were investigated by analyzing the electron paramagnetic resonance (EPR) spectra of selected surfactant spin probes and transmission electron microscopy (TEM) images in the presence of model membranes-cetyltrimethylammonium (CTAB) micelles, egg-lecithin liposomes, and dimyristoylphosphatidylcholine (DMPC) liposomes. This was undertaken to obtain information on interactions occurring at a molecular level between fibers and membranes which correlate with entrance of fibers into the membrane model or location of the fibers at the external or internal membrane interfaces. For CTAB micelles, all fibers were able to enter the micelles, but the hair-like structure and chemical surface characteristics of GF1 modified the micelle structure toward a bilayer-like organization, while MD8 and BV12, being shorter fibers and with a high density of surface interacting groups, partially destroyed the micelles. For liposomes, GF1 fibers partially penetrated the core solution, but DMPC liposomes showed increasing rigidity and organization of the bilayer. Conversely, for MD8 and BV12, the fibers did not cross the membrane demonstrating a smaller membrane structure perturbation. Scolecite fibers (termed SC1), used for comparison, presented poor interactions with the model membranes. The carcinogenicity of the zeolites, as postulated in the series SC1

Subject(s)
Cetrimonium Compounds/chemistry , Dimyristoylphosphatidylcholine/chemistry , Liposomes/chemistry , Micelles , Zeolites/chemistry , Cetrimonium , Electron Spin Resonance Spectroscopy , Membranes, Artificial , Microscopy, Electron, Transmission
19.
Bioconjug Chem ; 28(2): 524-538, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28068077

ABSTRACT

Poly(propyleneimine) glycodendrimers fully modified with maltose units were administered to different cancer cell lines and their effect on cell viability was evaluated by using MTS assay and flow cytometry. The mechanism of dendrimer-cell interactions was investigated by the electron paramagnetic resonance (EPR) technique by using a new nitroxide-conjugated glycodendrimer. The nitroxide groups did not modify both the biological properties (cell viability and apoptosis degree) of the dendrimers in the presence of the cells and the dendrimer-cell interactions. Since this class of dendrimers is already known to be biocompatible for human healthy cells, noncancer cells such as human peripheral blood mononuclear cells (PBMCs) and macrophages were also treated with the glycodendrimer, and EPR spectra of the nitroxide-conjugated glycodendrimer were compared for cancer and noncancer cells. It was found that this dendrimer selectively affects the cell viability of tumor cells, while, surprisingly, PBMC proliferation is induced. Moreover, H-bond-active glycodendrimer-cell interactions were different for the different cancer cell lines and noncancer cells. The nitroxide-conjugated glycodendrimer was able to interact with the cell membrane and eventually cross it, getting in contact with cytosol antioxidants. This study helps to clarify the potential anticancer effect of this class of dendrimers opening to future applications of these macromolecules as new antitumor agents.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Dendrimers/pharmacology , Nitrogen Oxides/pharmacology , Polypropylenes/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dendrimers/chemistry , Electron Spin Resonance Spectroscopy , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Maltose/analogs & derivatives , Maltose/pharmacology , Neoplasms/drug therapy , Nitrogen Oxides/chemistry , Polypropylenes/chemistry
20.
Eur J Pharm Biopharm ; 109: 93-102, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27693676

ABSTRACT

Toxicity is one of the main concerns limiting the use of surfactants. Many efforts have been devoted to the development of new amphiphilic molecules characterized by a lower toxicological profile and environmental impact. N-acyl amino acids are a class of anionic surfactants that can find applications in different technological fields as an alternative to sulphate-based surfactants (e.g., sodium dodecyl sulphate). The understanding of the relationship between chemical structure and toxicological profile is fundamental for the disclosure of the full potential of these amphiphiles. With this aim, two series of N-acyl surfactants, with different length of the hydrophobic tails and serine or alanine as polar head, were synthesized and fully characterized. The correlation between the surface and toxicological parameters allowed highlighting the role exerted by the length of the hydrocarbon chain and the polar head on cytotoxicity. The length of the hydrocarbon chain mainly influences surface properties and toxicological parameters, while the amino acid polar head may play a key role only on cellular toxicity. Overall, our data suggest that minor differences in the polar head, not significantly affecting CMC values, may have an impact on cytotoxicity.


Subject(s)
Alanine/chemistry , Chemistry, Pharmaceutical/methods , Serine/chemistry , Surface-Active Agents/chemistry , Amino Acids/chemistry , Caco-2 Cells , Cell Line, Tumor , Drug Design , Electron Spin Resonance Spectroscopy , Gases , Hemolysis , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , L-Lactate Dehydrogenase/chemistry , Light , Magnetic Resonance Spectroscopy , Micelles , Scattering, Radiation , Sodium Dodecyl Sulfate/chemistry , Solvents , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...