Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Transl Res ; 14(1): 295-303, 2022.
Article in English | MEDLINE | ID: mdl-35173846

ABSTRACT

The molecular mechanisms underlying progression from astrocytoma to secondary glioblastoma are poorly understood. Telomerase reverse transcriptase (TERT), a gene encoding for the catalytic subunit of telomerase, is upregulated in various cancers. Upregulation of TERT is a likely mechanism by which malignant cells delay senescence and evade cell death. TERT activity is also the primary mechanism by which malignant cells replenish telomeres, with the other means of telomere replacement being the alternative lengthening of the telomeres (ALT) system. The ALT system is known to be upregulated in tumors harboring loss of function mutations in ATRX. This study analyzed aggregate data on TERT and ATRX expression in astrocytoma, anaplastic astrocytoma, and secondary glioblastoma and then supplemented the data with our findings. In data obtained from Oncomine, significantly higher TERT expression is seen in astrocytomas and secondary glioblastomas compared to normal brain tissue. Additionally, The Cancer Genome Atlas data shows that TERT expression is a significant predictor of overall survival in low-grade gliomas. However, studies comparing the expression of TERT across all grades of astrocytomas had not been performed to date. Using immunohistochemical staining, we showed that controlling for ATRX and IDH mutational status, TERT expression increased with tumor grade in a cohort of patient-derived astrocytoma, anaplastic astrocytoma, and secondary glioblastoma samples. These findings indicate that TERT expression increases as astrocytomas become more aggressive tumors, and probably plays a role in their progression.

2.
Theranostics ; 11(5): 2048-2057, 2021.
Article in English | MEDLINE | ID: mdl-33500708

ABSTRACT

Glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. With a designation of WHO Grade IV, it is also the most lethal primary brain tumor with a median survival of just 15 months. This is often despite aggressive treatment that includes surgical resection, radiation therapy, and chemotherapy. Based on the poor outcomes and prevalence of the tumor, the demand for innovative therapies continues to represent a pressing issue for clinicians and researchers. In terms of therapies targeting metabolism, the prevalence of the Warburg effect has led to a focus on targeting glucose metabolism to halt tumor progression. While glucose is the dominant source of growth substrate in GBM, a number of unique metabolic pathways are exploited in GBM to meet the increased demand for replication and progression. In this review we aim to explore how metabolites from fatty acid oxidation, the urea cycle, the glutamate-glutamine cycle, and one-carbon metabolism are shunted toward energy producing pathways to meet the high energy demand in GBM. We will also explore how the process of autophagy provides a reservoir of nutrients to support viable tumor cells. By so doing, we aim to establish a foundation of implicated metabolic mechanisms supporting growth and tumorigenesis of GBM within the literature. With the sparse number of therapeutic interventions specifically targeting metabolic pathways in GBM, we hope that this review expands further insight into the development of novel treatment modalities.


Subject(s)
Brain Neoplasms/pathology , Energy Metabolism , Glioblastoma/pathology , Glucose/metabolism , Animals , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Humans
3.
F1000Res ; 9: 1078, 2020.
Article in English | MEDLINE | ID: mdl-33082935

ABSTRACT

The pandemic brought on by the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has become a global health crisis, with over 22 million confirmed cases and 777,000 fatalities due to coronavirus disease 2019 (COVID-19) reported worldwide. The major cause of fatality in infected patients, now referred to as the "Cytokine Storm Syndrome" (CSS), is a direct result of aberrant immune activation following SARS-CoV2 infection and results in excess release of inflammatory cytokines, such as interleukin (IL)-1, tumor necrosis factor α (TNF-α), and IL-6, by macrophages, monocytes, and dendritic cells. Single cell analysis has also shown significantly elevated levels of galectin 3 (Gal-3) in macrophages, monocytes, and dendritic cells in patients with severe COVID-19 as compared to mild disease. Inhibition of Gal-3 reduces the release of IL-1, IL-6, and TNF-α from macrophages in vitro, and as such may hold promise in reducing the incidence of CSS. In addition, Gal-3 inhibition shows promise in reducing transforming growth factor ß (TGF-ß) mediated pulmonary fibrosis, likely to be a major consequence in survivors of severe COVID-19. Finally, a key domain in the spike protein of SARS-CoV2 has been shown to bind N-acetylneuraminic acid (Neu5Ac), a process that may be essential to cell entry by the virus. This Neu5Ac-binding domain shares striking morphological, sequence, and functional similarities with human Gal-3. Here we provide an updated review of the literature linking Gal-3 to COVID-19 pathogenesis. Dually targeting galectins and the Neu5Ac-binding domain of SARS-CoV2 shows tentative promise in several stages of the disease: preventing viral entry, modulating the host immune response, and reducing the post-infectious incidence of pulmonary fibrosis.


Subject(s)
Coronavirus Infections/pathology , Cytokine Release Syndrome/virology , Galectin 3/immunology , Pneumonia, Viral/pathology , Betacoronavirus , COVID-19 , Humans , N-Acetylneuraminic Acid , Pandemics , SARS-CoV-2
4.
Pain ; 161(8): 1861-1871, 2020 08.
Article in English | MEDLINE | ID: mdl-32701845

ABSTRACT

We investigated the contribution of nucleus locus ceruleus (LC) to the development of pain-associated affective behavior. Mice of both sexes were subjected to sciatic nerve cuffing, a model of peripheral nerve injury, and monitored for 45 days. Although the thermal and mechanical thresholds were equally decreased in both males and females, only the male mice developed anxiodepressive-like behavior, which was complemented by suppressed hippocampal neurogenesis. Furthermore, the LC activity was lower in males when compared with females subjected to sciatic cuffing. Next, we used a chemogenetic approach to modulate the activity of LC projections to the dentate gyrus of the hippocampus in females without cuffs and in males with sciatic cuffs. Sustained inhibition of the LC projections to the dentate gyrus for 15 days induced anxiodepressive-like behavior and reduced the hippocampal neurogenesis in females. Activation of the LC projections to the dentate gyrus for 15 days prevented the development of anxiodepressive-like behavior and increased the hippocampal neurogenesis in males with cuffs. In sum, we demonstrated that the LC projections to the hippocampus link the sensory to the affective component of neuropathic injury and that the female mice are able to dissociate the nociception from affect by maintaining robust LC activity. The work provides evidence that sex differences in LC response to pain determine the sex differences in the development of pain phenotype.


Subject(s)
Sciatic Nerve , Sex Characteristics , Animals , Female , Hippocampus , Male , Mice , Mice, Inbred C57BL , Neurogenesis
5.
J Neuroimmunol ; 346: 577315, 2020 Jul 04.
Article in English | MEDLINE | ID: mdl-32682137

ABSTRACT

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by the deposition of amyloid-beta (Aß) plaques and widespread neuroinflammation. While the cause of AD remains unknown, multiple factors likely contribute to the disease, including heart disease, diabetes, previous head injury, as well as a number of genetic determinants. Inheritance of the apolipoprotein (APOE) ε4 allele represents the strongest genetic risk factor for development of AD, driving pathogenesis and increasing overall disease severity. APOE has long been recognized as a key regulator of cholesterol homeostasis, although a greater appreciation now exists for its role in various innate immune system processes. Indeed, APOE modulates inflammatory environments in brain in large part by altering gene expression profiles in glia, important mediators of immunity in the CNS. While the association between APOE and AD was first observed nearly three decades ago, the mechanism by which APOE ε4 influences the etiology and pathophysiology of AD is not well characterized. Overwhelming data supports the hypothesis that APOE ε4 dysregulates central amyloid metabolism by an undetermined molecular mechanism, thus laying the foundation for disease. A host of amyloid-degrading enzymes (ADEs) regulate Aß accumulation in brain, and therefore represent valuable therapeutic targets. Neprilysin (NEP), a metalloendopeptidase expressed by activated microglia and astrocytes, is a broad-spectrum ADE able to degrade a variety of Aß species. Here we describe in vivo and in vitro experiments designed to investigate the potential for APOE genotype to differentially regulate glial NEP in brain under neuroinflammatory conditions. Our results provide a novel mechanism by which APOE genotype-dependent differential expression of NEP by glia during neuroinflammation may contribute to AD pathogenesis.

6.
PeerJ ; 8: e9392, 2020.
Article in English | MEDLINE | ID: mdl-32587806

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), the causative agent of coronavirus disease 2019 (COVID-19), has been declared a global pandemic by the World Health Organization. With no standard of care for the treatment of COVID-19, there is an urgent need to identify therapies that may be effective in treatment. Recent evidence has implicated the development of cytokine release syndrome as the major cause of fatality in COVID-19 patients, with elevated levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) observed in patients. Galectin-3 (Gal-3) is an animal lectin that has been implicated in the disease process of a variety of inflammatory conditions. Inhibitors of the small molecule Gal-3 have been shown to reduce the levels of both IL-6 and TNF-α in vitro and have shown anti-inflammatory effects in vivo. Additionally, a key domain in the spike protein of ß-coronaviridae, a genus which includes SARS-CoV2, is nearly identical in morphology to human Gal-3. These spike proteins are critical for the virus' entry into host cells. Here we provide a systematic review of the available literature and an impetus for further research on the use of Gal-3 inhibitors in the treatment of COVID-19. Further, we propose a dual mechanism by which Gal-3 inhibition may be beneficial in the treatment of COVID-19, both suppressing the host inflammatory response and impeding viral attachment to host cells.

7.
Am J Cancer Res ; 9(12): 2760-2773, 2019.
Article in English | MEDLINE | ID: mdl-31911860

ABSTRACT

Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that serves many roles in inflammation and immunity; however, it is also involved in carcinogenesis. This is a review of the clinical and experimental data published on MIF and its role in various types of cancers such as glioblastomas, lung cancer, breast cancer, gastric cancer, melanoma, bladder cancer, and head and neck cancers. The goal of this review is to show MIFs role in various types of cancers. Data show that MIF is overexpressed in these malignancies in humans, and contributes to the deregulation of the cell cycle, angiogenesis, and metastasis. Clinical studies show that MIF overexpression in these types of tumors significantly decreases survival rate, and increases tumor aggression. There are multiple anti-MIF molecules that are currently being explored and investigations should be continued.

SELECTION OF CITATIONS
SEARCH DETAIL
...