Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 31(11): 107767, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32553152

ABSTRACT

The mammalian precerebellar pontine nucleus (PN) has a main role in relaying cortical information to the cerebellum. The molecular determinants establishing ordered connectivity patterns between cortical afferents and precerebellar neurons are largely unknown. We show that expression of Hox5 transcription factors is induced in specific subsets of postmitotic PN neurons at migration onset. Hox5 induction is achieved by response to retinoic acid signaling, resulting in Jmjd3-dependent derepression of Polycomb chromatin and 3D conformational changes. Hoxa5 drives neurons to settle posteriorly in the PN, where they are monosynaptically targeted by cortical neuron subsets mainly carrying limb somatosensation. Furthermore, Hoxa5 postmigratory ectopic expression in PN neurons is sufficient to attract cortical somatosensory inputs regardless of position and avoid visual afferents. Transcriptome analysis further suggests that Hoxa5 is involved in circuit formation. Thus, Hoxa5 coordinates postmitotic specification, migration, settling position, and sub-circuit assembly of PN neuron subsets in the cortico-cerebellar pathway.


Subject(s)
Cerebellum/metabolism , Gene Expression Regulation, Developmental/genetics , Homeodomain Proteins/metabolism , Neurons/metabolism , Transcription Factors/metabolism , Animals , Cell Movement/physiology , Cerebral Cortex/metabolism
2.
Cell Rep ; 13(4): 783-797, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26489473

ABSTRACT

Mouse whiskers are somatotopically mapped in brainstem trigeminal nuclei as neuronal modules known as barrelettes. Whisker-related afferents form barrelettes in ventral principal sensory (vPrV) nucleus, whereas mandibular input targets dorsal PrV (dPrV). How barrelette neuron identity and circuitry is established is poorly understood. We found that ectopic Hoxa2 expression in dPrV neurons is sufficient to attract whisker-related afferents, induce asymmetrical dendrite arbors, and allow ectopic barrelette map formation. Moreover, the thalamic area forming whisker-related barreloids is prenatally targeted by both vPrV and dPrV axons followed by perinatal large-scale pruning of dPrV axons and refinement of vPrV barrelette input. Ectopic Hoxa2 expression allows topographically directed targeting and refinement of dPrV axons with vPrV axons into a single whisker-related barreloid map. Thus, a single HOX transcription factor is sufficient to switch dPrV into a vPrV barrelette neuron program and coordinate input-output topographic connectivity of a dermatome-specific circuit module.


Subject(s)
Axons/physiology , Brain Stem/physiology , Homeodomain Proteins/metabolism , Neurons/physiology , Vibrissae/physiology , Animals , Brain Stem/cytology , Mice , Neurons/cytology , Vibrissae/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...