Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 183: 108379, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38154319

ABSTRACT

There are more than 3,500 active pharmaceutical ingredients (APIs) on the global market for human and veterinary use. Residues of these APIs eventually reach the aquatic environment. Although an environmental risk assessment (ERA) for marketing authorization applications of medicinal products is mandatory in the European Union since 2006, an ERA is lacking for most medicines approved prior to 2006 (legacy APIs). Since it is unfeasible to perform extensive ERA tests for all these legacy APIs, there is a need for prioritization of testing based on the limited data available. Prioritized APIs can then be further investigated to estimate their environmental risk in more detail. In this study, we prioritized more than 1,000 APIs used in Europe based on their predicted risk for aquatic freshwater ecosystems. We determined their risk by combining an exposure estimate (Measured or Predicted Environmental Concentration; MEC or PEC, respectively) with a Predicted No Effect Concentration (PNEC). We developed several procedures to combine the limited empirical data available with in silico data, resulting in multiple API rankings varying in data needs and level of conservativeness. In comparing empirical with in silico data, our analysis confirmed that the PEC estimated with the default parameters used by the European Medicines Agency often - but not always - represents a worst-case scenario. Comparing the ecotoxicological data for the three main taxonomic groups, we found that fish represents the most sensitive species group for most of the APIs in our list. We furthermore show that the use of in silico tools can result in a substantial underestimation of the ecotoxicity of APIs. After combining the different exposure and effect estimates into four risk rankings, the top-ranking APIs were further screened for availability of ecotoxicity data in data repositories. This ultimately resulted in the prioritization of 15 APIs for further ecotoxicological testing and/or exposure assessment.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Animals , Humans , Environmental Monitoring/methods , Ecosystem , Risk Assessment/methods , Fishes , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis
2.
Cancer Res ; 81(18): 4794-4807, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34193441

ABSTRACT

HSP90 is secreted by cancer cells into the extracellular milieu, where it exerts protumoral activities by activating extracellular substrate proteins and triggering autocrine signals through cancer cell surface receptors. Emerging evidence indicates that HSP90 co-chaperones are also secreted and may direct HSP90 extracellular activities. In this study, we found that the HSP90 co-chaperone Morgana is released by cancer cells and, in association with HSP90, induces cancer cell migration through TLR2, TLR4, and LRP1. In syngeneic cancer mouse models, a mAb targeting Morgana extracellular activity reduced primary tumor growth via macrophage-dependent recruitment of CD8+ T lymphocytes, blocked cancer cell migration, and inhibited metastatic spreading. Overall, these data define Morgana as a new player in the HSP90 extracellular interactome and suggest that Morgana may regulate HSP90 activity to promote cancer cell migration and suppress antitumor immunity. SIGNIFICANCE: This work suggests the potential therapeutic value of targeting the extracellular HSP90 co-chaperone Morgana to inhibit metastasis formation and enhance the CD8+ T-cell-mediated antitumor immune response.


Subject(s)
Cell Movement/drug effects , HSP90 Heat-Shock Proteins/metabolism , Immunity/drug effects , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Coculture Techniques , Cytotoxicity, Immunologic , Disease Models, Animal , Extracellular Space/metabolism , Heterografts , Humans , Macrophages/immunology , Macrophages/metabolism , Mice , Signal Transduction , Toll-Like Receptors/metabolism , Xenograft Model Antitumor Assays
3.
Cell Mol Life Sci ; 77(12): 2275-2288, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31811308

ABSTRACT

The NF-κB pathway represents a crucial signaling mechanism in sensing and integrating a multitude of environmental and intracellular stimuli and directing a coordinated response that from the cellular level may impact on the entire organism. A plethora of chaperone proteins work at multiple steps of the pathway, from membrane receptor activation to transcription factor binding to DNA. Indeed, chaperones are required to assist protein conformational changes, to assemble supramolecular complexes and to regulate protein ubiquitination, required for pathway activation. Some chaperones acquired a role as integral components of the signaling complexes, needed for signal progression. Here we describe the chaperones involved in the NF-κB pathway and their specific roles in the different contexts.


Subject(s)
Molecular Chaperones/metabolism , NF-kappa B/metabolism , Signal Transduction/physiology , Animals , Humans , Ubiquitination/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...