Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37960599

ABSTRACT

Short QT syndrome (SQTS) is an inherited cardiac ion-channel disease related to an increased risk of sudden cardiac death (SCD) in young and otherwise healthy individuals. SCD is often the first clinical presentation in patients with SQTS. However, arrhythmia risk stratification is presently unsatisfactory in asymptomatic patients. In this context, artificial intelligence-based electrocardiogram (ECG) analysis has never been applied to refine risk stratification in patients with SQTS. The purpose of this study was to analyze ECGs from SQTS patients with the aid of different AI algorithms to evaluate their ability to discriminate between subjects with and without documented life-threatening arrhythmic events. The study group included 104 SQTS patients, 37 of whom had a documented major arrhythmic event at presentation and/or during follow-up. Thirteen ECG features were measured independently by three expert cardiologists; then, the dataset was randomly divided into three subsets (training, validation, and testing). Five shallow neural networks were trained, validated, and tested to predict subject-specific class (non-event/event) using different subsets of ECG features. Additionally, several deep learning and machine learning algorithms, such as Vision Transformer, Swin Transformer, MobileNetV3, EfficientNetV2, ConvNextTiny, Capsule Networks, and logistic regression were trained, validated, and tested directly on the scanned ECG images, without any manual feature extraction. Furthermore, a shallow neural network, a 1-D transformer classifier, and a 1-D CNN were trained, validated, and tested on ECG signals extracted from the aforementioned scanned images. Classification metrics were evaluated by means of sensitivity, specificity, positive and negative predictive values, accuracy, and area under the curve. Results prove that artificial intelligence can help clinicians in better stratifying risk of arrhythmia in patients with SQTS. In particular, shallow neural networks' processing features showed the best performance in identifying patients that will not suffer from a potentially lethal event. This could pave the way for refined ECG-based risk stratification in this group of patients, potentially helping in saving the lives of young and otherwise healthy individuals.


Subject(s)
Arrhythmias, Cardiac , Artificial Intelligence , Humans , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/complications , Neural Networks, Computer , Electrocardiography/methods , Death, Sudden, Cardiac/etiology
2.
Sensors (Basel) ; 23(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37420843

ABSTRACT

Melanoma is a malignant cancer type which develops when DNA damage occurs (mainly due to environmental factors such as ultraviolet rays). Often, melanoma results in intense and aggressive cell growth that, if not caught in time, can bring one toward death. Thus, early identification at the initial stage is fundamental to stopping the spread of cancer. In this paper, a ViT-based architecture able to classify melanoma versus non-cancerous lesions is presented. The proposed predictive model is trained and tested on public skin cancer data from the ISIC challenge, and the obtained results are highly promising. Different classifier configurations are considered and analyzed in order to find the most discriminating one. The best one reached an accuracy of 0.948, sensitivity of 0.928, specificity of 0.967, and AUROC of 0.948.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Dermoscopy/methods , Melanoma/diagnosis , Skin Neoplasms/diagnosis , Skin Neoplasms/pathology , DNA Damage
SELECTION OF CITATIONS
SEARCH DETAIL
...