Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 69(4): 855-66, 2015 May.
Article in English | MEDLINE | ID: mdl-25103911

ABSTRACT

Amazonian Dark Earths (ADE) or Terra Preta de Índio formed in the past by pre-Columbian populations are highly sustained fertile soils supported by microbial communities that differ from those extant in adjacent soils. These soils are found in the Amazon region and are considered as a model soil when compared to the surrounding and background soils. The aim of this study was to assess the effects of ADE and its surrounding soil on the rhizosphere bacterial communities of two leguminous plant species that frequently occur in the Amazon region in forest sites (Mimosa debilis) and open areas (Senna alata). Bacterial community structure was evaluated using terminal restriction fragment length polymorphism (T-RFLP) and bacterial community composition by V4 16S rRNA gene region pyrosequencing. T-RFLP analysis showed effect of soil types and plant species on rhizosphere bacterial community structure. Differential abundance of bacterial phyla, such as Acidobacteria, Actinobacteria, Verrucomicrobia, and Firmicutes, revealed that soil type contributes to shape the bacterial communities. Furthermore, bacterial phyla such as Firmicutes and Nitrospira were mostly influenced by plant species. Plant roots influenced several soil chemical properties, especially when plants were grown in ADE. These results showed that differences observed in rhizosphere bacterial community structure and composition can be influenced by plant species and soil fertility due to variation in soil attributes.


Subject(s)
Fabaceae/microbiology , Rhizosphere , Soil Microbiology , Soil/chemistry , Trees/microbiology , Bacteria/genetics , Bacteria/metabolism , Bacterial Physiological Phenomena , Brazil , Mimosa/microbiology , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...