Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Metab Brain Dis ; 33(3): 917-931, 2018 06.
Article in English | MEDLINE | ID: mdl-29497932

ABSTRACT

Autism spectrum disorder (ASD) affects about 1% of the world's population. Vitamin D is thought to be essential for normal brain development and modulation of the immune system. Worldwide about 1 billion people are affected by vitamin D deficiency. High-sensitivity C-reactive protein (hs-CRP), cytochrome P450 2E1 (CYP2E1) and 8-hydroxy-2'-deoxyguanosine (8-OH-dG) are biomarkers related to inflammation and oxidative stress. In the present study, these biomarkers were together with serum 25-hydroxyvitamin D (25(OH)D3) analyzed in 28 (mean age seven years) Saudi male patients with ASD. The study was conducted to determine if there is any relationship between vitamin D levels, the tested biomarkers and the presence and severity of ASD. The hope was to identify if these biomarkers may be useful for early ASD diagnosis. The Childhood Autism Rating Scale (CARS) and the Social Responsiveness Scale (SRS) were used to measure autism severity. The results of the ASD children were compared with 27 age and gender-matched neurotypical controls. The data indicated that Saudi patients with ASD have significantly lower plasma levels of 25(OH)D3 than neurotypical controls (38 ng/ml compared to 56 ng/ml, respectively; [P = 0.001]). Surprisingly, the levels of CYP2E1 were lower in the children with ASD than the neurotypical controls (0.48 ± 0.08 vs. 69 ± 0.07 ng/ml, respectively; P = 0.001). The ASD children also had significantly higher levels of hs-CRP (0.79 ± 0.09 vs. 0.59 ± 0.09 ng/ml, respectively; P = 0.001) and 8-OH-dG (8.17 ± 1.04 vs. 4.13 ± 1.01 ng/ml, respectively; P = 0.001, compared to neurotypical age and gender-matched controls. The values for hs-CRP and 8-OH-dG did not correlate [P < 0.001] with autism severity. There was found a relationship between autism severity on the CARS scale and the levels of 25(OH)D3 and CYP1B1. But this was not found for SRS. All four biomarkers seemed to have good sensitivity and specificity, but the sample size of the present study was too small to determine clinical usefulness. The findings also indicate that inadequate levels of vitamin D play a role in the etiology and severity of autism. Furthermore, the results of the present study suggest the possibility of using 25(OH)D3, CYP1B1, hs-CRP and 8-OH-dG, preferably in combination, as biomarkers for the early diagnosis of ASD. However, further research is needed to evaluate this hypothesis.


Subject(s)
Autism Spectrum Disorder/diagnosis , Biomarkers/analysis , Early Diagnosis , Vitamin D/metabolism , Adolescent , Autism Spectrum Disorder/drug therapy , Behavior/drug effects , Case-Control Studies , Child , Child, Preschool , Female , Humans , Male , Vitamin D/pharmacology
2.
Arch Toxicol ; 91(1): 97-107, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27425218

ABSTRACT

The objective was to provide the current state of the art regarding the role of vitamin D in chronic diseases (osteoporosis, cancer, cardiovascular diseases, dementia, autism, type 1 and type 2 diabetes mellitus, male and female fertility). The document was drawn up by panelists that provided their contribution according to their own scientific expertise. Each scientific expert supplied a first draft manuscript on a specific aspect of the document's topic that was subjected to voting by all experts as "yes" (agreement with the content and/or wording) or "no" (disagreement). The adopted rule was that statements supported by ≥75 % of votes would be immediately accepted, while those with <25 % would be rejected outright. Others would be subjected to further discussion and subsequent voting, where ≥67 % support or, in an eventual third round, a majority of ≥50 % would be needed. This document finds that the current evidence support a role for vitamin D in bone health but not in other health conditions. However, subjects with vitamin D deficiency have been found to be at high risk of developing chronic diseases. Therefore, although at the present time there is not sufficient evidence to recommend vitamin D supplementation as treatment of chronic diseases, the treatment of vitamin D deficiency should be desiderable in order to reduce the risk of developing chronic diseases.


Subject(s)
Evidence-Based Medicine , Osteoporosis/prevention & control , Vitamin D Deficiency/diet therapy , Vitamin D/therapeutic use , Animals , Autism Spectrum Disorder/epidemiology , Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/prevention & control , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Dementia/epidemiology , Dementia/etiology , Dementia/prevention & control , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/etiology , Diabetes Mellitus, Type 1/prevention & control , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/prevention & control , Female , Humans , Infertility, Female/epidemiology , Infertility, Female/etiology , Infertility, Female/prevention & control , Infertility, Male/epidemiology , Infertility, Male/etiology , Infertility, Male/prevention & control , Male , Neoplasms/epidemiology , Neoplasms/etiology , Neoplasms/prevention & control , Osteoporosis/epidemiology , Osteoporosis/etiology , Practice Guidelines as Topic , Risk , Vitamin D Deficiency/physiopathology
3.
Nutr Neurosci ; 19(8): 346-351, 2016 Oct.
Article in English | MEDLINE | ID: mdl-25876214

ABSTRACT

OBJECTIVES: Autism spectrum disorder (ASD) is a developmental disorder characterized by pervasive deficits in social interaction, impairment in verbal and non-verbal communication, and stereotyped patterns of interests and activities. Vitamin-D deficiency was previously reported in autistic children. However, the data on the relationship between vitamin D deficiency and the severity of autism are limited. METHODS: We performed a case-controlled cross-sectional analysis conducted on 122 ASD children, to assess their vitamin D status compared to controls and the relationship between vitamin D deficiency and the severity of autism. We also conducted an open trial of vitamin D supplementation in ASD children. RESULTS: Fifty-seven percent of the patients in the present study had vitamin D deficiency, and 30% had vitamin D insufficiency. The mean 25-OHD levels in patients with severe autism were significantly lower than those in patients with mild/moderate autism. Serum 25-OHD levels had significant negative correlations with Childhood Autism Rating Scale (CARS) scores. Of the ASD group, 106 patients with low-serum 25-OHD levels (<30 ng/ml) participated in the open label trial. They received vitamin D3 (300 IU/kg/day not to exceed 5000 IU/day) for 3 months. Eighty-three subjects completed 3 months of daily vitamin D treatment. Collectively, 80.72% (67/83) of subjects who received vitamin D3 treatment had significantly improved outcome, which was mainly in the sections of the CARS and aberrant behavior checklist subscales that measure behavior, stereotypy, eye contact, and attention span. CONCLUSION: Vitamin D is inexpensive, readily available and safe. It may have beneficial effects in ASD subjects, especially when the final serum level is more than 40 ng/ml. TRIAL REGISTRATION NUMBER: UMIN-CTR Study Design: trial Number: R000016846.


Subject(s)
Autism Spectrum Disorder/diet therapy , Child Nutritional Physiological Phenomena , Cholecalciferol/therapeutic use , Dietary Supplements , Nutritional Status , Vitamin D Deficiency/diet therapy , Attention , Autism Spectrum Disorder/blood , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/physiopathology , Calcifediol/blood , Case-Control Studies , Child , Child, Preschool , Cholecalciferol/metabolism , Cross-Sectional Studies , Egypt/epidemiology , Eye Movements , Humans , Hyperkinesis/etiology , Hyperkinesis/prevention & control , Male , Patient Compliance , Psychiatric Status Rating Scales , Severity of Illness Index , Social Behavior , Stereotypic Movement Disorder/etiology , Stereotypic Movement Disorder/prevention & control , Vitamin D Deficiency/blood , Vitamin D Deficiency/complications , Vitamin D Deficiency/epidemiology
4.
Nutrients ; 7(3): 1538-64, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25734565

ABSTRACT

People with neurodevelopmental disorders and intellectual disabilities have much greater health care needs. Mainly staying indoors, such people generally have low 25-hydroxyvitamin D (25(OH)D) concentrations. The Vitamin D Task Force of the American Academy of Developmental Medicine and Dentistry (AADMD) reviewed the evidence of 25(OH)D concentrations that benefit the health of persons with developmental disabilities. Maintaining recommended optimal serum 25(OH)D concentrations year long will benefit skeletal development in infants, children, and adolescents, and benefit musculoskeletal health and neuromuscular coordination in adult patients, and decrease risk of falls. Maintaining optimal concentrations decreases risks and severities of autoimmune diseases, cardiovascular disease, many types of cancer, dementia, types 1 and 2 diabetes mellitus, and respiratory tract infections. Other benefits include improved dental and oral health and improved physical performance. The Task Force recommends that 25(OH)D concentrations for optimal health to be in the range of 75 to 125 nmol/L, which can be achieved using between 800 and 4000 IU/day vitamin D3 and sensible exposure to solar UVB radiation. The paper also discusses the potential risks of higher 25(OH)D concentrations, the evidence from and limitations of randomized controlled trials, and the recommendations by various groups and agencies.


Subject(s)
Developmental Disabilities , Health , Intellectual Disability , Vitamin D Deficiency/drug therapy , Vitamin D/analogs & derivatives , Vitamin D/therapeutic use , Vitamins/therapeutic use , Developmental Disabilities/blood , Developmental Disabilities/complications , Dietary Supplements , Humans , Intellectual Disability/blood , Intellectual Disability/complications , Sunlight , Vitamin D/blood , Vitamin D Deficiency/blood , Vitamin D Deficiency/complications , Vitamins/blood
6.
Dermatoendocrinol ; 6(1): e983401, 2014.
Article in English | MEDLINE | ID: mdl-26413186

ABSTRACT

Several studies found an inverse relationship between 25-hydroxyvitamin D [25(OH)D] and markers of inflammation. A controversy exists as to whether vitamin D lowers inflammation or whether inflammation lowers 25(OH)D concentrations. Certainly 25(OH)D concentrations fall after major surgery. However, is this due to inflammation lowering 25(OH)D or is 25(OH)D being metabolically cleared by the body to quell inflammation. We searched the literature and found 39 randomized controlled trials (RCT) of vitamin D and markers of inflammation. Seventeen found significantly reduced inflammatory markers, 19 did not, one was mixed and one showed adverse results. With few exceptions, studies in normal subjects, obesity, type 2 diabetics, and stable cardiovascular disease did not find significant beneficial effects. However, we found that 6 out of 7 RCTS of vitamin D3 in highly inflammatory conditions (acute infantile congestive heart failure, multiple sclerosis, inflammatory bowel disease, cystic fibrosis, SLE, active TB and evolving myocardial infarction) found significant reductions. We found baseline and final 25(OH)D predicted RCTs with significant reduction in inflammatory markers. Vitamin D tends to modestly lower markers of inflammation in highly inflammatory conditions, when baseline 25(OH)D levels were low and when achieved 25(OH)D levels were higher. Future inquiries should: recruit subjects with low baseline 25(OH)D levels, subjects with elevated markers of inflammation, subjects with inflammatory conditions, achieve adequate final 25(OH)D levels, and use physiological doses of vitamin D. We attempted to identify all extant randomized controlled trials (RCTs) of vitamin D that used inflammatory markers as primary or secondary endpoints.

8.
Dermatoendocrinol ; 5(1): 159-64, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-24494049

ABSTRACT

Evidence is mounting that vitamin D deficiency is intimately involved in autism. We report on autism prevalence by US state for those aged 6-17 y in 2010 with respect to indices of solar UV-B (UVB) doses. We calculated autism prevalence rates for white, black and Asian Americans by using total prevalence and relative populations of minors for each ethnic group by state. Analyses omit AK and HI (considered extreme cases), WY (no data), along with AZ and ND for black Americans (low numbers) and DC, ME, MT, ND and SD for Asian Americans (low numbers). For white Americans, the regression coefficient for solar UVB doses and autism prevalence ranged from -0.52 in January to -0.57 in October. For black Americans, the regression coefficient for latitude was 0.61, whereas those for solar UVB ranged from -0.55 to -0.61. For Asian Americans, the values for solar UVB ranged from -0.28 to -0.38. The inverse correlation between solar UVB and autism prevalence is similar to that for many types of cancer in the US. The journal literature indicates that adverse effects on fetal brain development during pregnancy due to vitamin D deficiency can explain these findings. However, we cannot rule out a role of vitamin D deficiency in early life. These results add to the evidence that vitamin D deficiency may be an important risk factor for autism and suggest that pregnant women and autistic individuals raise their serum 25-hydroxyvitamin D concentrations above 30 ng/ml.

9.
Dermatoendocrinol ; 5(1): 199-204, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-24494055

ABSTRACT

A growing body of literature suggests that higher serum 25-hydroxyvitamin D [25(OH)D] concentrations, either in utero or in early life, may reduce the risk of autism. For example, an ecological study in the companion paper inversely correlated solar UV-B doses in the United States with prevalence of autism among those aged 6-17 y. That study proposed that vitamin D deficiency during pregnancy could account for this finding, although the findings are also consistent with childhood vitamin D deficiency contributing to the condition. Also, in a recent study, children with autism had lower serum 25(OH)D concentrations than did control subjects (19 vs. 33 ng/ml), despite parents of each group reporting the same amount of sun exposure. The same study found highly significant inverse correlations between 25(OH)D and autism rating scales and between 25(OH)D and levels of an antineuronal antibody. This finding indicates that higher serum 25(OH)D concentrations may reduce the symptoms of established autism. Because activated vitamin D, a secosteroid, upregulates DNA-repair genes, vitamin D deficiency during development may inhibit the repair of de novo DNA mutations in fetuses and infants and thus contribute to risk of autism. Vitamin D might also reduce the risk or severity of autism through its anti-inflammatory actions, antiautoimmune effects, increasing seizure threshold, increasing T-regulatory cells, protecting the mitochondria, and upregulating glutathione, which scavenges oxidative by-products and chelates (captures and excretes) heavy metals. Vitamin D deficiency during pregnancy and childhood is a widespread and growing epidemic.

13.
Virol J ; 6: 121, 2009 Aug 11.
Article in English | MEDLINE | ID: mdl-19671177

ABSTRACT

On the epidemiology of influenza: reply to Radonovich LJ, Martinello RA, Hodgson M, Milton DK, Nardell EA. Influenza and ultraviolet germicidal irradiation. Virol J. 2008, 5:149.


Subject(s)
Immunologic Factors/pharmacology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Vitamin D/pharmacology , Humans , Ultraviolet Rays
14.
Med Sci Sports Exerc ; 41(5): 1102-10, 2009 May.
Article in English | MEDLINE | ID: mdl-19346976

ABSTRACT

PURPOSE: Activated vitamin D (calcitriol) is a pluripotent pleiotropic secosteroid hormone. As a steroid hormone, which regulates more than 1000 vitamin D-responsive human genes, calcitriol may influence athletic performance. Recent research indicates that intracellular calcitriol levels in numerous human tissues, including nerve and muscle tissue, are increased when inputs of its substrate, the prehormone vitamin D, are increased. METHODS: We reviewed the world's literature for evidence that vitamin D affects physical and athletic performance. RESULTS: Numerous studies, particularly in the German literature in the 1950s, show vitamin D-producing ultraviolet light improves athletic performance. Furthermore, a consistent literature indicates physical and athletic performance is seasonal; it peaks when 25-hydroxy-vitamin D [25(OH)D] levels peak, declines as they decline, and reaches its nadir when 25(OH)D levels are at their lowest. Vitamin D also increases the size and number of Type II (fast twitch) muscle fibers. Most cross-sectional studies show that 25(OH)D levels are directly associated with musculoskeletal performance in older individuals. Most randomized controlled trials, again mostly in older individuals, show that vitamin D improves physical performance. CONCLUSIONS: Vitamin D may improve athletic performance in vitamin D-deficient athletes. Peak athletic performance may occur when 25(OH)D levels approach those obtained by natural, full-body, summer sun exposure, which is at least 50 ng x mL(-1). Such 25(OH)D levels may also protect the athlete from several acute and chronic medical conditions.


Subject(s)
Athletic Performance/physiology , Vitamin D/metabolism , Vitamins/metabolism , Humans , Vitamin D/administration & dosage , Vitamins/administration & dosage
17.
Altern Med Rev ; 13(1): 6-20, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18377099

ABSTRACT

The recent discovery--from a meta-analysis of 18 randomized controlled trials--that supplemental cholecalciferol (vitamin D) significantly reduces all-cause mortality emphasizes the medical, ethical, and legal implications of promptly diagnosing and adequately treating vitamin D deficiency. Not only are such deficiencies common, and probably the rule, vitamin D deficiency is implicated in most of the diseases of civilization. Vitamin D's final metabolic product is a potent, pleiotropic, repair and maintenance, seco-steroid hormone that targets more than 200 human genes in a wide variety of tissues, meaning it has as many mechanisms of action as genes it targets. One of the most important genes vitamin D up-regulates is for cathelicidin, a naturally occurring broad-spectrum antibiotic. Natural vitamin D levels, those found in humans living in a sun-rich environment, are between 40-70 ng per ml, levels obtained by few modern humans. Assessing serum 25-hydroxy-vitamin D (25(OH)D) is the only way to make the diagnosis and to assure treatment is adequate and safe. Three treatment modalities exist for vitamin D deficiency: sunlight, artificial ultraviolet B (UVB) radiation, and vitamin D3 supplementation. Treatment of vitamin D deficiency in otherwise healthy patients with 2,000-7,000 IU vitamin D per day should be sufficient to maintain year-round 25(OH)D levels between 40-70 ng per mL. In those with serious illnesses associated with vitamin D deficiency, such as cancer, heart disease, multiple sclerosis, diabetes, autism, and a host of other illnesses, doses should be sufficient to maintain year-round 25(OH)D levels between 55 -70 ng per mL. Vitamin D-deficient patients with serious illness should not only be supplemented more aggressively than the well, they should have more frequent monitoring of serum 25(OH)D and serum calcium. Vitamin D should always be adjuvant treatment in patients with serious illnesses and never replace standard treatment. Theoretically, pharmacological doses of vitamin D (2,000 IU per kg per day for three days) may produce enough of the naturally occurring antibiotic cathelicidin to cure common viral respiratory infections, such as influenza and the common cold, but such a theory awaits further science.


Subject(s)
Vitamin D , Vitamins , Calcifediol/blood , Calcifediol/deficiency , Cholecalciferol/therapeutic use , Humans , Mortality , Sunlight , Vitamin D/adverse effects , Vitamin D/blood , Vitamin D/physiology , Vitamin D/therapeutic use , Vitamin D Deficiency/complications , Vitamin D Deficiency/therapy , Vitamins/adverse effects , Vitamins/therapeutic use
18.
Virol J ; 5: 29, 2008 Feb 25.
Article in English | MEDLINE | ID: mdl-18298852

ABSTRACT

The epidemiology of influenza swarms with incongruities, incongruities exhaustively detailed by the late British epidemiologist, Edgar Hope-Simpson. He was the first to propose a parsimonious theory explaining why influenza is, as Gregg said, "seemingly unmindful of traditional infectious disease behavioral patterns." Recent discoveries indicate vitamin D upregulates the endogenous antibiotics of innate immunity and suggest that the incongruities explored by Hope-Simpson may be secondary to the epidemiology of vitamin D deficiency. We identify - and attempt to explain - nine influenza conundrums: (1) Why is influenza both seasonal and ubiquitous and where is the virus between epidemics? (2) Why are the epidemics so explosive? (3) Why do they end so abruptly? (4) What explains the frequent coincidental timing of epidemics in countries of similar latitude? (5) Why is the serial interval obscure? (6) Why is the secondary attack rate so low? (7) Why did epidemics in previous ages spread so rapidly, despite the lack of modern transport? (8) Why does experimental inoculation of seronegative humans fail to cause illness in all the volunteers? (9) Why has influenza mortality of the aged not declined as their vaccination rates increased? We review recent discoveries about vitamin D's effects on innate immunity, human studies attempting sick-to-well transmission, naturalistic reports of human transmission, studies of serial interval, secondary attack rates, and relevant animal studies. We hypothesize that two factors explain the nine conundrums: vitamin D's seasonal and population effects on innate immunity, and the presence of a subpopulation of "good infectors." If true, our revision of Edgar Hope-Simpson's theory has profound implications for the prevention of influenza.


Subject(s)
Influenza A virus/pathogenicity , Animals , Disease Models, Animal , Humans , Immunity, Innate , Seasons , Vitamin D/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...