Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ESMO Open ; 5(4)2020 08.
Article in English | MEDLINE | ID: mdl-32817058

ABSTRACT

BACKGROUND: Combination treatments targeting the MEK-ERK pathway and checkpoint inhibitors have improved overall survival in melanoma. Resistance to treatment especially in the brain remains challenging, and rare disease subtypes such as acral melanoma are not typically included in trials. Here we present analyses from longitudinal sampling of a patient with metastatic acral melanoma that became resistant to successive immune and targeted therapies. METHODS: We performed whole-exome sequencing and RNA sequencing on an acral melanoma that progressed on successive immune (nivolumab) and targeted (dabrafenib) therapy in the brain to identify resistance mechanisms. In addition, we performed growth inhibition assays, reverse phase protein arrays and immunoblotting on patient-derived cell lines using dabrafenib in the presence or absence of cerebrospinal fluid (CSF) in vitro. Patient-derived xenografts were also developed to analyse response to dabrafenib. RESULTS: Immune escape following checkpoint blockade was not due to loss of tumour cell recognition by the immune system or low neoantigen burden, but was associated with distinct changes in the microenvironment. Similarly, resistance to targeted therapy was not associated with acquired mutations but upregulation of the AKT/phospho-inositide 3-kinase pathway in the presence of CSF. CONCLUSION: Heterogeneous tumour interactions within the brain microenvironment enable progression on immune and targeted therapies and should be targeted in salvage treatments.


Subject(s)
Melanoma , Skin Neoplasms , Brain , Humans , Immunotherapy , Melanoma/drug therapy , Molecular Targeted Therapy , Tumor Microenvironment
2.
Eur Urol Oncol ; 2(1): 1-11, 2019 02.
Article in English | MEDLINE | ID: mdl-30929837

ABSTRACT

BACKGROUND: The prostate cancer (PCa) diagnostic pathway is undergoing a radical change with the introduction of multiparametric magnetic resonance imaging (mpMRI), genomic testing, and different prostate biopsy techniques. It has been proposed that these tests should be used in a sequential manner to optimise risk stratification. OBJECTIVE: To characterise the genomic, epigenomic, and transcriptomic features of mpMRI-visible and -nonvisible PCa in clinically localised disease. DESIGN, SETTING, AND PARTICIPANTS: Multicore analysis of fresh prostate tissue sampled immediately after radical prostatectomy was performed for intermediate- to high-risk PCa. INTERVENTION: Low-pass whole-genome, exome, methylation, and transcriptome profiling of patient tissue cores taken from microscopically benign and cancerous areas in the same prostate. Circulating free and germline DNA was assessed from the blood of five patients. OUTCOME MEASUREMENT AND STATISTICAL ANALYSIS: Correlations between preoperative mpMRI and genomic characteristics of tumour and benign prostate samples were assessed. Gene profiles for individual tumour cores were correlated with existing genomic classifiers currently used for prognostication. RESULTS AND LIMITATIONS: A total of 43 prostate cores (22 tumour and 21 benign) were profiled from six whole prostate glands. Of the 22 tumour cores, 16 were tumours visible and six were tumours nonvisible on mpMRI. Intratumour genomic, epigenomic, and transcriptomic heterogeneity was found within mpMRI-visible lesions. This could potentially lead to misclassification of patients using signatures based on copy number or RNA expression. Moreover, three of the six cores obtained from mpMRI-nonvisible tumours harboured one or more genetic alterations commonly observed in metastatic castration-resistant PCa. No circulating free DNA alterations were found. Limitations include the small cohort size and lack of follow-up. CONCLUSIONS: Our study supports the continued use of systematic prostate sampling in addition to mpMRI, as avoidance of systematic biopsies in patients with negative mpMRI may mean that clinically significant tumours harbouring genetic alterations commonly seen in metastatic PCa are missed. Furthermore, there is inconsistency in individual genomics when genomic classifiers are applied. PATIENT SUMMARY: Our study shows that tumour heterogeneity within prostate tumours visible on multiparametric magnetic resonance imaging (mpMRI) can lead to misclassification of patients if only one core is used for genomic analysis. In addition, some cancers that were missed by mpMRI had genomic aberrations that are commonly seen in advanced metastatic prostate cancer. Avoiding biopsies in mpMRI-negative cases may mean that such potentially lethal cancers are missed.


Subject(s)
Genomics/methods , Multiparametric Magnetic Resonance Imaging/methods , Prostatic Neoplasms/diagnostic imaging , Aged , Humans , Male , Middle Aged , Prostatic Neoplasms/genetics
3.
Biomed Res Int ; 2014: 146170, 2014.
Article in English | MEDLINE | ID: mdl-25309903

ABSTRACT

Prostate cancer (PCa) is one of the leading causes of cancer-related death in men. Despite considerable advances in prostate cancer early detection and clinical management, validation of new biomarkers able to predict the natural history of tumor progression is still necessary in order to reduce overtreatment and to guide therapeutic decisions. MicroRNAs are endogenous noncoding RNAs which offer a fast fine-tuning and energy-saving mechanism for posttranscriptional control of protein expression. Growing evidence indicate that these RNAs are able to regulate basic cell functions and their aberrant expression has been significantly correlated with cancer development. Therefore, detection of microRNAs in tumor tissues and body fluids represents a new tool for early diagnosis and patient prognosis prediction. In this review, we summarize current knowledge about microRNA deregulation in prostate cancer mainly focusing on the different clinical aspects of the disease. We also highlight the potential roles of microRNAs in PCa management, while also discussing several current challenges and needed future research.


Subject(s)
Databases, Genetic , MicroRNAs/therapeutic use , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/therapy , Risk Assessment , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Male , Prognosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology
4.
PLoS One ; 8(2): e56824, 2013.
Article in English | MEDLINE | ID: mdl-23437250

ABSTRACT

The abnormal expression of several microRNAs has a causal role in tumorigenesis with either antineoplastic or oncogenic functions. Here we demonstrated that miR-126 and miR-126* play a tumor suppressor role in human melanoma through the direct or indirect repression of several key oncogenic molecules. The expression levels of miR-126&126* were elevated in normal melanocytes and primary melanoma cell lines, whereas they markedly declined in metastatic cells. Indeed, the restored expression of miR-126&126* in two advanced melanoma cell lines was accompanied by a significant reduction of proliferation, invasion and chemotaxis in vitro as well as of growth and dissemination in vivo. In accordance, the reverse functional effects were obtained by knocking down miR-126&126* by transfecting antisense LNA oligonucleotides in melanoma cells. Looking for the effectors of these antineoplastic functions, we identified ADAM9 and MMP7, two metalloproteases playing a pivotal role in melanoma progression, as direct targets of miR-126&126*. In addition, as ADAM9 and MMP7 share a role in the proteolytic cleavage of the HB-EGF precursor, we looked for the effectiveness of this regulatory pathway in melanoma, confirming the decrease of HB-EGF activation as a consequence of miR-126&126*-dependent downmodulation of ADAM9 and MMP7. Finally, gene profile analyses showed that miR-126&126* reexpression was sufficient to inactivate other key signaling pathways involved in the oncogenic transformation, as PI3K/AKT and MAPK, and to restore melanogenesis, as indicated by KIT/MITF/TYR induction. In view of this miR-126&126* wide-ranging action, we believe that the replacement of these microRNAs might be considered a promising therapeutic approach.


Subject(s)
ADAM Proteins/genetics , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Matrix Metalloproteinase 7/genetics , Melanoma/genetics , Membrane Proteins/genetics , MicroRNAs/genetics , Skin Neoplasms/genetics , ADAM Proteins/metabolism , Animals , Base Pairing , Base Sequence , Cell Line, Tumor , Disease Progression , Gene Expression Profiling , Heparin-binding EGF-like Growth Factor , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Matrix Metalloproteinase 7/metabolism , Melanocytes/metabolism , Melanoma/metabolism , Membrane Proteins/metabolism , Mice , Osteopontin/genetics , Osteopontin/metabolism , Proteolysis , RNA Interference , Skin Neoplasms/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...