Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(3): 1435-1449, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38142455

ABSTRACT

Transcription regulators play central roles in orchestrating responses to changing environmental conditions. Recently the Caulobacter crescentus transcription activator DriD, which belongs to the newly defined WYL-domain family, was shown to regulate DNA damage responses independent of the canonical SOS pathway. However, the molecular mechanisms by which DriD and other WYL-regulators sense environmental signals and recognize DNA are not well understood. We showed DriD DNA-binding is triggered by its interaction with ssDNA, which is produced during DNA damage. Here we describe the structure of the full-length C. crescentus DriD bound to both target DNA and effector ssDNA. DriD consists of an N-terminal winged-HTH (wHTH) domain, linker region, three-helix bundle, WYL-domain and C-terminal WCX-dimer domain. Strikingly, DriD binds DNA using a novel, asymmetric DNA-binding mechanism that results from different conformations adopted by the linker. Although the linker does not touch DNA, our data show that contacts it makes with the wHTH are key for specific DNA binding. The structure indicates how ssDNA-effector binding to the WYL-domain impacts wHTH DNA binding. In conclusion, we present the first structure of a WYL-activator bound to both effector and target DNA. The structure unveils a unique, asymmetric DNA binding mode that is likely conserved among WYL-activators.


Subject(s)
Bacterial Proteins , Caulobacter , DNA-Binding Proteins , Transcription Factors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Caulobacter/metabolism , DNA/chemistry , DNA, Single-Stranded/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism
2.
PLoS One ; 18(3): e0282155, 2023.
Article in English | MEDLINE | ID: mdl-36862634

ABSTRACT

Kinetoplastid protists such as Trypanosoma brucei undergo an unusual process of mitochondrial uridine (U) insertion and deletion editing termed kinetoplastid RNA editing (kRNA editing). This extensive form of editing, which is mediated by guide RNAs (gRNAs), can involve the insertion of hundreds of Us and deletion of tens of Us to form a functional mitochondrial mRNA transcript. kRNA editing is catalyzed by the 20 S editosome/RECC. However, gRNA directed, processive editing requires the RNA editing substrate binding complex (RESC), which is comprised of 6 core proteins, RESC1-RESC6. To date there are no structures of RESC proteins or complexes and because RESC proteins show no homology to proteins of known structure, their molecular architecture remains unknown. RESC5 is a key core component in forming the foundation of the RESC complex. To gain insight into the RESC5 protein we performed biochemical and structural studies. We show that RESC5 is monomeric and we report the T. brucei RESC5 crystal structure to 1.95 Å. RESC5 harbors a dimethylarginine dimethylaminohydrolase-like (DDAH) fold. DDAH enzymes hydrolyze methylated arginine residues produced during protein degradation. However, RESC5 is missing two key catalytic DDAH residues and does bind DDAH substrate or product. Implications of the fold for RESC5 function are discussed. This structure provides the first structural view of an RESC protein.


Subject(s)
RNA Editing , RNA, Guide, Kinetoplastida , RNA, Guide, Kinetoplastida/genetics , Arginine , Catalysis , Cytoplasm
3.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: mdl-34493679

ABSTRACT

HIV-1 selectively packages two copies of its 5'-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5' leader of the viral RNA. Although residues within the leader that promote packaging have been identified, the determinants of authentic packaging fidelity and efficiency remain unknown. Here, we show that a previously characterized 159-nt region of the leader that possesses all elements required for RNA dimerization, high-affinity NC binding, and packaging in a noncompetitive RNA packaging assay (ΨCES) is unexpectedly poorly packaged when assayed in competition with the intact 5' leader. ΨCES lacks a 5'-tandem hairpin element that sequesters the 5' cap, suggesting that cap sequestration may be important for packaging. Consistent with this hypothesis, mutations within the intact leader that expose the cap without disrupting RNA structure or NC binding abrogated RNA packaging, and genetic addition of a 5' ribozyme to ΨCES to enable cotranscriptional shedding of the 5' cap promoted ΨCES-mediated RNA packaging to wild-type levels. Additional mutations that either block dimerization or eliminate subsets of NC binding sites substantially attenuated competitive packaging. Our studies indicate that packaging is achieved by a bipartite mechanism that requires both sequestration of the 5' cap and exposure of NC binding sites that reside fully within the ΨCES region of the dimeric leader. We speculate that cap sequestration prevents irreversible capture by the cellular RNA processing and translation machinery, a mechanism likely employed by other viruses that package 5'-capped RNA genomes.


Subject(s)
5' Untranslated Regions/genetics , Genome, Viral , HIV-1/genetics , RNA Caps/metabolism , RNA, Viral/metabolism , Virion/physiology , Virus Assembly , HEK293 Cells , HIV Infections/virology , Humans , Nucleic Acid Conformation , RNA Caps/chemistry , RNA Caps/genetics , RNA, Viral/chemistry , RNA, Viral/genetics
4.
Proc Natl Acad Sci U S A ; 117(30): 17737-17746, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32647061

ABSTRACT

Selective packaging of the HIV-1 genome during virus assembly is mediated by interactions between the dimeric 5'-leader of the unspliced viral RNA and the nucleocapsid (NC) domains of a small number of assembling viral Gag polyproteins. Here, we show that the dimeric 5'-leader contains more than two dozen NC binding sites with affinities ranging from 40 nM to 1.4 µM, and that all high-affinity sites (Kd ≲ 400 nM) reside within a ∼150-nt region of the leader sufficient to promote RNA packaging (core encapsidation signal, ΨCES). The four initial binding sites with highest affinity reside near two symmetrically equivalent three-way junction structures. Unlike the other high-affinity sites, which bind NC with exothermic energetics, binding to these sites occurs endothermically due to concomitant unwinding of a weakly base-paired [UUUU]:[GGAG] helical element. Mutations that stabilize base pairing within this element eliminate NC binding to this site and severely impair RNA packaging into virus-like particles. NMR studies reveal that a recently discovered small-molecule inhibitor of HIV-1 RNA packaging that appears to function by stabilizing the structure of the leader binds directly to the [UUUU]:[GGAG] helix. Our findings suggest a sequential NC binding mechanism for Gag-genome assembly and identify a potential RNA Achilles' heel to which HIV therapeutics may be targeted.


Subject(s)
HIV Infections/virology , HIV-1/physiology , Nucleocapsid/metabolism , RNA, Viral , Regulatory Sequences, Ribonucleic Acid , Virus Assembly , Base Sequence , Binding Sites , Genome, Viral , Nucleic Acid Conformation , Nucleocapsid Proteins/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...