Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Article in English | MEDLINE | ID: mdl-38984683

ABSTRACT

AREAS COVERED: This paper outlines the selection of NAMs, including in vitro assays using primary rat cortical neurons, zebrafish embryos, and Caenorhabditis elegans. These assays aim to assess neurotoxic endpoints such as neuronal activity and behavioral responses. Microelectrode array recordings of rat cortical neurons provide insights into the impact of botanical extracts on neuronal function, while the zebrafish embryos and C. elegans assays evaluate neurobehavioral responses. The paper also provides an account of the selection of botanical case studies based on expert judgment and existing neuroactivity/toxicity information. The proposed battery of assays will be tested with these case studies to evaluate their utility for neurotoxicity screening. EXPERT OPINION: The complexity of botanicals necessitates the use of multiple NAMs for effective neurotoxicity screening. This paper discusses the evaluation of methodologies to develop a robust framework for evaluating botanical safety, including complex neuronal models and key neurodevelopmental process assays. It aims to establish a comprehensive screening framework.

2.
Neurotoxicology ; 103: 266-287, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964509

ABSTRACT

Parkinson's disease (PD) is a debilitating neurodegenerative disease affecting millions of individuals worldwide. Hallmark features of PD pathology are the formation of Lewy bodies in neuromelanin-containing dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc), and the subsequent irreversible death of these neurons. Although genetic risk factors have been identified, around 90 % of PD cases are sporadic and likely caused by environmental exposures and gene-environment interaction. Mechanistic studies have identified a variety of chemical PD risk factors. PD neuropathology occurs throughout the brain and peripheral nervous system, but it is the loss of DAergic neurons in the SNpc that produce many of the cardinal motor symptoms. Toxicology studies have found specifically the DAergic neuron population of the SNpc exhibit heightened sensitivity to highly variable chemical insults (both in terms of chemical structure and mechanism of neurotoxic action). Thus, it has become clear that the inherent neurobiology of nigral DAergic neurons likely underlies much of this neurotoxic response to broad insults. This review focuses on inherent neurobiology of nigral DAergic neurons and how such neurobiology impacts the primary mechanism of neurotoxicity. While interactions with a variety of other cell types are important in disease pathogenesis, understanding how inherent DAergic biology contributes to selective sensitivity and primary mechanisms of neurotoxicity is critical to advancing the field. Specifically, key biological features of DAergic neurons that increase neurotoxicant susceptibility.

3.
Neurotoxicology ; 101: 102-116, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38401688

ABSTRACT

Parkinson's Disease (PD) is a chronic neurodegenerative disorder characterized by progressive loss of midbrain dopaminergic neurons in the substantia nigra part of the brain. Pathology spread to numerous brain regions and cell types suggests that intercellular communication is essential to PD progression. Exosomes mediate intercellular communication between neurons, glia, and other cell types throughout PD-relevant brain regions. However, the mechanism remains unclear, and its implication in PD pathology, is not well understood. In the current study, we explored the role of exosomes in modulating the response to PD-relevant toxicants. In cellular models of PD, neuronal cell-derived exosomes are readily internalized by recipient neuronal cells as intact vesicles. Internalized exosomes in bystander neuronal cells localize to mitochondria and dysregulate mitochondrial functions, leading to cell death under PD stress conditions. NGS analysis of exosomes released by neuronal cells subjected to PD stress conditions showed that levels of specific miRNAs were altered in exosomes under PD stress conditions. Bioinformatic analysis of the miRNA targets revealed enriched pathways related to neuronal processes and morphogenesis, apoptosis and ageing. Levels of two miRNAs, hsa-miR-30a-5p and hsa-miR-181c-5p, were downregulated in exosomes under PD stress conditions. Expression of the identified miRNAs in neuronal cells led to their enrichment in exosomes, and exosome uptake in neuronal cells ameliorated mitochondrial dysfunction induced by PD stress conditions and rescued cell death. In conclusion, loss of enrichment of specific miRNAs, including miR-30a-5p and miR-181c-5p, under PD stress conditions causes mitochondrial dysfunction and neuronal death, and hence may lead to progression of PD.


Subject(s)
MicroRNAs , Mitochondrial Diseases , Parkinson Disease , Humans , Parkinson Disease/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Death , Mitochondria/metabolism , Dopaminergic Neurons/metabolism , Mitochondrial Diseases/metabolism
4.
Biomedicines ; 11(10)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37893165

ABSTRACT

Many potential immune therapeutic targets are similarly affected in adult-onset neurodegenerative diseases, such as Alzheimer's (AD) disease, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD), as well as in a seemingly distinct Niemann-Pick type C disease with primarily juvenile onset. This strongly argues for an overlap in pathogenic mechanisms. The commonly researched immune targets include various immune cell subsets, such as microglia, peripheral macrophages, and regulatory T cells (Tregs); the complement system; and other soluble factors. In this review, we compare these neurodegenerative diseases from a clinical point of view and highlight common pathways and mechanisms of protein aggregation, neurodegeneration, and/or neuroinflammation that could potentially lead to shared treatment strategies for overlapping immune dysfunctions in these diseases. These approaches include but are not limited to immunisation, complement cascade blockade, microbiome regulation, inhibition of signal transduction, Treg boosting, and stem cell transplantation.

5.
Chem Res Toxicol ; 36(8): 1361-1373, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37421305

ABSTRACT

Animal fat and iron-rich diets are risk factors for Parkinson's disease (PD). The heterocyclic aromatic amines (HAAs) harman and norharman are neurotoxicants formed in many foods and beverages, including cooked meats, suggesting a role for red meat in PD. The structurally related carcinogenic HAAs 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-9H-pyrido[2,3-b]indole (AαC) also form in cooked meats. We investigated the cytotoxicity, DNA-damaging potential, and mitochondrial damage of HAAs and their genotoxic HONH-HAA metabolites in galactose-dependent SH-SY5Y cells, a human neuroblastoma cell line relevant for PD-related neurotoxicity. All HAAs and HONH-HAAs induced weak toxicity except HONH-PhIP, which was 1000-fold more potent than the other chemicals. HONH-PhIP DNA adduct formation occurred at 300-fold higher levels than adducts formed with HONH-MeIQx and HONH-AαC, assuming similar cellular uptake rates. PhIP-DNA adduct levels occurred at concentrations as low as 1 nM and were threefold or higher and more persistent in mitochondrial DNA than nuclear DNA. N-Acetyltransferases (NATs), sulfotransferases, and kinases catalyzed PhIP-DNA binding and converted HONH-PhIP to highly reactive ester intermediates. DNA binding assays with cytosolic, mitochondrial, and nuclear fractions of SH-SY5Y fortified with cofactors revealed that cytosolic AcCoA-dependent enzymes, including NAT1, mainly carried out HONH-PhIP bioactivation to form N-acetoxy-PhIP, which binds to DNA. Furthermore, HONH-PHIP and N-acetoxy-PhIP inhibited mitochondrial complex-I, -II, and -III activities in isolated SH-SY5Y mitochondria. Mitochondrial respiratory chain complex dysfunction and DNA damage are major mechanisms in PD pathogenesis. Our data support the possible role of PhIP in PD etiology.


Subject(s)
Carcinogens , Neuroblastoma , Animals , Humans , Carcinogens/metabolism , Pyridines , DNA Damage , Amines/metabolism , Meat/analysis
6.
Biomedicines ; 11(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37371694

ABSTRACT

Proteinopathy and neuroinflammation are two main hallmarks of neurodegenerative diseases. They also represent rare common events in an exceptionally broad landscape of genetic, environmental, neuropathologic, and clinical heterogeneity present in patients. Here, we aim to recount the emerging trends in amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD) spectrum disorder. Our review will predominantly focus on neuroinflammation and systemic immune imbalance in ALS and FTD, which have recently been highlighted as novel therapeutic targets. A common mechanism of most ALS and ~50% of FTD patients is dysregulation of TAR DNA-binding protein 43 (TDP-43), an RNA/DNA-binding protein, which becomes depleted from the nucleus and forms cytoplasmic aggregates in neurons and glia. This, in turn, via both gain and loss of function events, alters a variety of TDP-43-mediated cellular events. Experimental attempts to target TDP-43 aggregates or manipulate crosstalk in the context of inflammation will be discussed. Targeting inflammation, and the immune system in general, is of particular interest because of the high plasticity of immune cells compared to neurons.

7.
Food Chem Toxicol ; 174: 113685, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36813153

ABSTRACT

Parkinson's Disease (PD) and Alcohol Use Disorder (AUD) are disorders that involve similar dopaminergic neurobiological pathways and dysregulations in motivation- and reward-related behaviors. This study explored whether exposure to a PD-related neurotoxicant, paraquat (PQ), alters binge-like alcohol drinking and striatal monoamines in mice selectively bred for high alcohol preference (HAP), and whether these effects are sex-dependent. Previous studies found female mice are less susceptible to PD-related toxicants compared to male mice. Mice were treated with PQ or vehicle over 3 weeks (10 mg/kg, i.p. once per week) and binge-like alcohol [20% (v/v)] drinking was assessed. Mice were euthanized and brains were microdissected for monoamine analyses by high performance liquid chromatography with electrochemical detection (HPLC-ECD). PQ-treated HAP male mice showed significantly decreased binge-like alcohol drinking and ventral striatal 3,4-Dihydroxyphenylacetic acid (DOPAC) levels compared to vehicle-treated HAP mice. These effects were absent in female HAP mice. These findings suggest that male HAP mice may be more susceptible than female mice to PQ's disruptive effects on binge-like alcohol drinking and associated monoamine neurochemistry and may be relevant for understanding neurodegenerative processes implicated in PD and AUD.


Subject(s)
Binge Drinking , Parkinson Disease , Mice , Animals , Male , Female , Paraquat , Mice, Inbred C57BL , Alcohol Drinking , Ethanol
8.
J Neurochem ; 165(3): 379-390, 2023 05.
Article in English | MEDLINE | ID: mdl-36815399

ABSTRACT

Dietary lipids, particularly omega-3 polyunsaturated fatty acids, are speculated to impact behaviors linked to the dopaminergic system, such as movement and control of circadian rhythms. However, the ability to draw a direct link between dopaminergic omega-3 fatty acid metabolism and behavioral outcomes has been limited to the use of diet-based approaches, which are confounded by systemic effects. Here, neuronal lipid metabolism was targeted in a diet-independent manner by manipulation of long-chain acyl-CoA synthetase 6 (ACSL6) expression. ACSL6 performs the initial reaction for cellular fatty acid metabolism and prefers the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA). The loss of Acsl6 in mice (Acsl6-/- ) depletes neuronal membranes of DHA content and results in phenotypes linked to dopaminergic control, such as hyperlocomotion, impaired short-term spatial memory, and imbalances in dopamine neurochemistry. To investigate the role of dopaminergic ACSL6 on these outcomes, a dopaminergic neuron-specific ACSL6 knockout mouse was generated (Acsl6DA-/- ). Acsl6DA-/- mice demonstrated hyperlocomotion and imbalances in striatal dopamine neurochemistry. Circadian rhythms of both the Acsl6-/- and the Acsl6DA-/- mice were similar to control mice under basal conditions. However, upon light entrainment, a mimetic of jet lag, both the complete knockout of ACSL6 and the dopaminergic-neuron-specific loss of ACSL6 resulted in a longer recovery to entrainment compared to control mice. In conclusion, these data demonstrate that ACSL6 in dopaminergic neurons alters dopamine metabolism and regulation of light entrainment suggesting that DHA metabolism mediated by ACSL6 plays a role in dopamine neuron biology.


Subject(s)
Dopaminergic Neurons , Lipid Metabolism , Mice , Animals , Dopaminergic Neurons/metabolism , Dopamine , Dietary Fats , Diet , Mice, Knockout , Docosahexaenoic Acids/metabolism , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism
9.
Toxicol Sci ; 191(1): 163-178, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36269219

ABSTRACT

Organophosphate (OP) pesticides are widely used in agriculture. While acute cholinergic toxicity has been extensively studied, chronic effects on other neurons are less understood. Here, we demonstrated that the OP pesticide chlorpyrifos (CPF) and its oxon metabolite are dopaminergic neurotoxicants in Caenorhabditis elegans. CPF treatment led to inhibition of mitochondrial complex II, II + III, and V in rat liver mitochondria, while CPF-oxon did not (complex II + III and IV inhibition observed only at high doses). While the effect on C. elegans cholinergic behavior was mostly reversible with toxicant washout, dopamine-associated deficits persisted, suggesting dopaminergic neurotoxicity was irreversible. CPF reduced the mitochondrial content in a dose-dependent manner and the fat modulatory genes cyp-35A2 and cyp-35A3 were found to have a key role in CPF neurotoxicity. These findings were consistent with in vitro effects of CPF and CPF-oxon on nuclear receptor signaling and fatty acid/steroid metabolism observed in ToxCast assays. Two-way hierarchical analysis revealed in vitro effects on estrogen receptor, pregnane X receptor, and peroxisome proliferator-activated receptor gamma pathways as well as neurotoxicity of CPF, malathion, and diazinon, whereas these effects were not detected in malaoxon and diazoxon. Taken together, our study suggests that mitochondrial toxicity and metabolic effects of CPF, but not CPF-oxon, have a key role of CPF neurotoxicity in the low-dose, chronic exposure. Further mechanistic studies are needed to examine mitochondria as a common target for all OP pesticide parent compounds, because this has important implications on cumulative pesticide risk assessment.


Subject(s)
Chlorpyrifos , Insecticides , Pesticides , Rats , Animals , Chlorpyrifos/toxicity , Chlorpyrifos/metabolism , Cholinesterase Inhibitors/toxicity , Dopamine , Caenorhabditis elegans/metabolism , Insecticides/toxicity
10.
Chem Res Toxicol ; 35(8): 1312-1333, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35921496

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a group of persistent environmental pollutants that are ubiquitously found in the environment and virtually in all living organisms, including humans. PFAS cross the blood-brain barrier and accumulate in the brain. Thus, PFAS are a likely risk for neurotoxicity. Studies that measured PFAS levels in the brains of humans, polar bears, and rats have demonstrated that some areas of the brain accumulate greater amounts of PFAS. Moreover, in humans, there is evidence that PFAS exposure is associated with attention-deficit/hyperactivity disorder (ADHD) in children and an increased cause of death from Parkinson's disease and Alzheimer's disease in elderly populations. Given possible links to neurological disease, critical analyses of possible mechanisms of neurotoxic action are necessary to advance the field. This paper critically reviews studies that investigated potential mechanistic causes for neurotoxicity including (1) a change in neurotransmitter levels, (2) dysfunction of synaptic calcium homeostasis, and (3) alteration of synaptic and neuronal protein expression and function. We found growing evidence that PFAS exposure causes neurotoxicity through the disruption of neurotransmission, particularly the dopamine and glutamate systems, which are implicated in age-related psychiatric illnesses and neurodegenerative diseases. Evaluated research has shown there are highly reproduced increased glutamate levels in the hippocampus and catecholamine levels in the hypothalamus and decreased dopamine in the whole brain after PFAS exposure. There are significant gaps in the literature relative to the assessment of the nigrostriatal system (striatum and ventral midbrain) among other regions associated with PFAS-associated neurologic dysfunction observed in humans. In conclusion, evidence suggests that PFAS may be neurotoxic and associated with chronic and age-related psychiatric illnesses and neurodegenerative diseases. Thus, it is imperative that future mechanistic studies assess the impact of PFAS and PFAS mixtures on the mechanism of neurotransmission and the consequential functional effects.


Subject(s)
Environmental Pollutants , Fluorocarbons , Neurotoxicity Syndromes , Aged , Animals , Child , Dopamine/metabolism , Environmental Pollutants/metabolism , Environmental Pollutants/toxicity , Fluorocarbons/toxicity , Glutamates , Humans , Neurotoxicity Syndromes/metabolism , Rats , Synaptic Transmission
12.
Front Toxicol ; 4: 826488, 2022.
Article in English | MEDLINE | ID: mdl-35373186

ABSTRACT

Neurological hazard assessment of industrial and pesticidal chemicals demands a substantial amount of time and resources. Caenorhabditis elegans is an established model organism in developmental biology and neuroscience. It presents an ideal test system with relatively fewer neurons (302 in hermaphrodites) versus higher-order species, a transparent body, short lifespan, making it easier to perform neurotoxic assessment in a time and cost-effective manner. Yet, no regulatory testing guidelines have been developed for C. elegans in the field of developmental and adult neurotoxicity. Here, we describe a set of morphological and behavioral assessment protocols to examine neurotoxicity in C. elegans with relevance to cholinergic and dopaminergic systems. We discuss the homology of human genes and associated proteins in these two signaling pathways and evaluate the morphological and behavioral endpoints of C. elegans in the context of published adverse outcome pathways of neurodegenerative diseases. We conclude that C. elegans neurotoxicity testing will not only be instrumental to eliminating mammalian testing in neurological hazard assessment but also lead to new knowledge and mechanistic validation in the adverse outcome pathway framework.

13.
Chem Res Toxicol ; 35(1): 59-72, 2022 01 17.
Article in English | MEDLINE | ID: mdl-34990108

ABSTRACT

Heterocyclic aromatic amines (HAAs) are mainly formed in the pyrolysis process during high-temperature cooking of meat. Meat consumption is very typical of the western diet, and the amount of meat consumption in the eastern countries is growing rapidly; HAAs represents widespread exposure. HAAs are classified as possible human carcinogens; numerous epidemiological studies have demonstrated regular consumption of meat with HAAs as risk factor for cancers. Specific HAAs have received major attention. For example, 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine has been extensively studied as a genotoxicant and mutagen, with emergent literature on neurotoxicity. Harmane has been extensively studied for a role in essential tremors and potentially Parkinson's disease (PD). Harmane levels have been demonstrated to be elevated in blood and brain in essential tremor patients. Meat consumption has been implicated in the etiology of neurodegenerative diseases; however, the role of toxicants formed during meat preparation has not been studied. Epidemiological studies are currently examining the association between HAAs and risk of neurodegenerative diseases such as essential tremors and PD. Studies from our laboratory and others have provided strong evidence that HAA exposure produces PD and Alzheimer's disease-relevant neurotoxicity in cellular and animal models. In this review, we summarize and critically evaluate previous studies on HAA-induced neurotoxicity and the molecular basis of potential neurotoxic effects of HAAs. The available studies provide strong support for the premise that HAAs may impact neurological function and that addressing gaps in understanding of adverse neurological outcomes is critical to determine whether these compounds are modifiable risk factors.


Subject(s)
Amines/adverse effects , Heterocyclic Compounds/adverse effects , Neurodegenerative Diseases/chemically induced , Animals , Humans
14.
Biomolecules ; 11(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34572528

ABSTRACT

Disrupted systemic copper (Cu) homeostasis underlies neurodegenerative diseases with early symptoms including olfactory dysfunction. This study investigated the impact of Cu dyshomeostasis on olfactory function, adult neurogenesis, and neurochemical balance. Models of Cu deficiency (CuD) and Cu overload (CuO) were established by feeding adult rats with Cu-restricted diets plus ip. injection of a Cu chelator (ammonium tetrathiomolybdate) and excess Cu, respectively. CuD reduced Cu levels in the olfactory bulb (OB), subventricular zone (SVZ), rostral migratory stream (RMS), and striatum, while CuO increased Cu levels in these areas. The buried pellet test revealed both CuD and CuO prolonged the latency to uncover food. CuD increased neural proliferation and stem cells in the SVZ and newly differentiated neurons in the OB, whereas CuO caused opposite alterations, suggesting a "switch"-type function of Cu in regulating adult neurogenesis. CuO increased GABA in the OB, while both CuD and CuO reduced DOPAC, HVA, 5-HT and the DA turnover rate in olfactory-associated brain regions. Altered mRNA expression of Cu transport and storage proteins in tested brain areas were observed under both conditions. Together, results support an association between systemic Cu dyshomeostasis and olfactory dysfunction. Specifically, altered adult neurogenesis along the SVZ-RMS-OB pathway and neurochemical imbalance could be the factors that may contribute to olfactory dysfunction.


Subject(s)
Brain/metabolism , Brain/physiopathology , Copper/metabolism , Neurogenesis , Olfactory Bulb/physiopathology , Animals , Biological Transport , Biomarkers/metabolism , Cell Proliferation , Glutamic Acid/metabolism , Homeostasis , Male , Neural Stem Cells , Neurons/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , gamma-Aminobutyric Acid/metabolism
16.
J Biochem Mol Toxicol ; 35(4): e22694, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33393683

ABSTRACT

Alzheimer's disease (AD) is a major public health crisis due to devastating cognitive symptoms, a lack of curative treatments, and increasing prevalence. Most cases are sporadic (>95% of cases) after the age of 65 years, implicating an important role of environmental factors in disease pathogenesis. Environmental neurotoxicants have been implicated in neurodegenerative disorders including Parkinson's Disease and AD. Animal models of AD and in vitro studies have shed light on potential neuropathological mechanisms, yet the biochemical and molecular underpinnings of AD-relevant environmental neurotoxicity remain poorly understood. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a potentially critical pathogenic target of environmentally induced neurotoxicity. BACE1 clearly has a critical role in AD pathophysiology: It is required for amyloid beta production and expression and activity of BACE1 are increased in the AD brain. Though the literature on BACE1 in response to environmental insults is limited, current studies, along with extensive AD neurobiology literature suggest that BACE1 deserves attention as an important neurotoxic target. Here, we critically review research on environmental neurotoxicants such as metals, pesticides, herbicides, fungicides, polyfluoroalkyl substances, heterocyclic aromatic amines, advanced glycation end products, and acrolein that modulate BACE1 and potential mechanisms of action. Though more research is needed to clearly understand whether BACE1 is a critical mediator of AD-relevant neurotoxicity, available reports provide convincing evidence that BACE1 is altered by environmental risk factors associated with AD pathology, implying that BACE1 inhibition and its use as a biomarker should be considered in AD management and research.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases/biosynthesis , Aspartic Acid Endopeptidases/biosynthesis , Brain/enzymology , Environmental Exposure/adverse effects , Gene Expression Regulation, Enzymologic , Neurotoxicity Syndromes , Neurotoxins/toxicity , Aged , Alzheimer Disease/enzymology , Alzheimer Disease/etiology , Alzheimer Disease/pathology , Animals , Brain/pathology , Disease Models, Animal , Female , Humans , Male , Neurotoxicity Syndromes/enzymology , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/pathology
17.
Neurotoxicology ; 81: 147-160, 2020 12.
Article in English | MEDLINE | ID: mdl-33058929

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is a major public health concern due in part to prevalence, debilitating symptoms, and links to environmental exposures. Much research has focused on environmental factors that may lead to dopaminergic neurotoxicity that occurs in PD. In the study of neuronal uptake and neurotoxicity, critical species differences have been observed. For example, neuromelanin is a molecule formed in part by the breakdown products of dopamine metabolism, along with lipid and protein components. Interestingly, human catecholaminergic neurons contain readily detectable amounts of neuromelanin, while rodent models form far lower levels of neuromelanin that is barely detectable. This discrepancy is potentially an important translational weakness. Recently, we showed that neuromelanin formation modulates heterocyclic aromatic amine (HAA)-induced neurotoxicity in cellular models. HAAs are dietary toxins that have primarily been studied as carcinogens, with emergent literature on selective neurotoxicity. The goal of the present study was to identify whether mitochondria in neuromelanin forming cells may be especially sensitive to HAAs. Here, we exposed galactose-supplemented SH-SY5Y cells to HAAs and tested mitochondrial function and mitophagy. The ectopic formation of neuromelanin was found to increase mitochondrial oxidative stress, decrease membrane potential, increase mitochondrial bioenergetic impairments, and impair mitophagy relative to HAA-treated cells that do not form neuromelanin. These results suggest that neuromelanin has a critical role in HAA toxicity and adverse effects on mitochondria. The data also further cement the need to conduct both mechanistic and risk assessment studies on PD-relevant neurotoxicity in models that form neuromelanin.


Subject(s)
Harmine/analogs & derivatives , Imidazoles/toxicity , Melanins/metabolism , Mitochondria/drug effects , Mitophagy/drug effects , Neurons/drug effects , Parkinsonian Disorders/chemically induced , Cell Line, Tumor , Energy Metabolism/drug effects , Harmine/toxicity , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Neurons/metabolism , Neurons/ultrastructure , Oxidative Stress/drug effects , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology
18.
Toxics ; 8(2)2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32549216

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of chemicals that were widely used in manufacturing and are now present in the environment throughout the world. It is known that various PFAS are quantifiable in human in blood, but potential adverse health outcomes remain unclear. Sentinel and non-traditional model species are useful to study potential toxicity of PFAS in order to understand the relationship between environmental and human health. Here, we present a critical review of studies on the neurotoxicity of PFAS in sentinel and non-traditional laboratory model systems, including Caenorhabditis elegans (nematode), Dugesia japonica (planarian), Rana pipiens (frogs), Danio rerio and Oryzias melastigma (fish), and Ursus maritimus (polar bears). PFAS have been implicated in developmental neurotoxicity in non-traditional and traditional model systems as well as sentinel species, including effects on neurotransmitter levels, especially acetylcholine and its metabolism. However, further research on the mechanisms of toxicity needs to be conducted to determine if these chemicals are affecting organisms in a similar manner. Overall, findings tend to be similar among the various species, but bioaccumulation may vary, which needs to be taken into account in future studies by quantifying target organ concentrations of PFAS to better compare different species. Furthermore, data on the majority of PFAS is lacking in neurotoxicity testing, and additional studies are needed to corroborate findings thus far.

19.
Toxicology ; 437: 152436, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32169473

ABSTRACT

Alzheimer's disease (AD) is a public health crisis due to debilitating cognitive symptoms and lack of curative treatments, in the context of increasing prevalence. Thus, it is critical to identify modifiable risk factors. High levels of meat consumption may increase AD risk. Many toxins are formed during meat cooking such as heterocyclic aromatic amines (HAAs). Our prior studies have shown that HAAs produce dopaminergic neurotoxicity. Given the mechanistic and pathological overlap between AD and dopaminergic disorders we investigated whether exposure to 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), a prevalent dietary HAA formed during high-temperature meat cooking, may produce AD-relevant neurotoxicity. Here, C57BL/6 mice were treated with 100 or 200 mg/kg PhIP for 8 h or 75 mg/kg for 4 weeks and 16 weeks. PhIP exposure for 8 h produced oxidative damage, and AD-relevant alterations in hippocampal synaptic proteins, Amyloid-beta precursor protein (APP), and ß-Site amyloid precursor protein cleaving enzyme 1 (BACE1). PhIP exposure for 4 weeks resulted in an increase in BACE1. PhIP exposure for 16 weeks resulted in increased hippocampal oxidative damage, APP, BACE1, Aß aggregation, and tau phosphorylation. Quantification of intracellular nitrotyrosine revealed oxidative damage in cholinergic neurons after 8 h, 4 weeks and 16 weeks of PhIP exposure. Our study demonstrates that increase in oxidative damage, APP and BACE1 might be a possible mechanism by which PhIP promotes Aß aggregation. Given many patients with AD or PD exhibit neuropathological overlap, our study suggests that HAA exposure should be further studied for roles in mediating pathogenic overlap.


Subject(s)
Alzheimer Disease/pathology , Food Contamination , Hippocampus/pathology , Imidazoles , Neurons/pathology , Alzheimer Disease/chemically induced , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Disease Models, Animal , Disease Progression , Hippocampus/metabolism , Male , Mice, Inbred C57BL , Neurons/metabolism , Oxidative Stress , Phosphorylation , Protein Aggregation, Pathological , Time Factors , tau Proteins/metabolism
20.
IEEE Trans Med Imaging ; 39(7): 2472-2481, 2020 07.
Article in English | MEDLINE | ID: mdl-32031935

ABSTRACT

Imaging fluorescence through millimeters or centimeters of tissue has important in vivo applications, such as guiding surgery and studying the brain. Often, the important information is the location of one of more optical reporters, rather than the specifics of the local geometry, motivating the need for a localization method that provides this information. We present an optimization approach based on a diffusion model for the fast localization of fluorescent inhomogeneities in deep tissue with expanded beam illumination that simplifies the experiment and the reconstruction. We show that the position of a fluorescent inhomogeneity can be estimated while assuming homogeneous tissue parameters and without having to model the excitation profile, reducing the computational burden and improving the utility of the method. We perform two experiments as a demonstration. First, a tumor in a mouse is localized using a near infrared folate-targeted fluorescent agent (OTL38). This result shows that localization can quickly provide tumor depth information, which could reduce damage to healthy tissue during fluorescence-guided surgery. Second, another near infrared fluorescent agent (ATTO647N) is injected into the brain of a rat, and localized through the intact skull and surface tissue. This result will enable studies of protein aggregation and neuron signaling.


Subject(s)
Fluorescent Dyes , Neoplasms , Animals , Brain/diagnostic imaging , Lighting , Mice , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...