Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 33(5): 465-474, 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-37988592

ABSTRACT

Whole genome sequencing (WGS) from large clinically unselected cohorts provides a unique opportunity to assess the penetrance and expressivity of rare and/or known pathogenic mitochondrial variants in population. Using WGS from 179 862 clinically unselected individuals from the UK Biobank, we performed extensive single and rare variant aggregation association analyses of 15 881 mtDNA variants and 73 known pathogenic variants with 15 mitochondrial disease-relevant phenotypes. We identified 12 homoplasmic and one heteroplasmic variant (m.3243A>G) with genome-wide significant associations in our clinically unselected cohort. Heteroplasmic m.3243A>G (MAF = 0.0002, a known pathogenic variant) was associated with diabetes, deafness and heart failure and 12 homoplasmic variants increased aspartate aminotransferase levels including three low-frequency variants (MAF ~0.002 and beta~0.3 SD). Most pathogenic mitochondrial disease variants (n = 66/74) were rare in the population (<1:9000). Aggregated or single variant analysis of pathogenic variants showed low penetrance in unselected settings for the relevant phenotypes, except m.3243A>G. Multi-system disease risk and penetrance of diabetes, deafness and heart failure greatly increased with m.3243A>G level ≥ 10%. The odds ratio of these traits increased from 5.61, 12.3 and 10.1 to 25.1, 55.0 and 39.5, respectively. Diabetes risk with m.3243A>G was further influenced by type 2 diabetes genetic risk. Our study of mitochondrial variation in a large-unselected population identified novel associations and demonstrated that pathogenic mitochondrial variants have lower penetrance in clinically unselected settings. m.3243A>G was an exception at higher heteroplasmy showing a significant impact on health making it a good candidate for incidental reporting.


Subject(s)
Deafness , Diabetes Mellitus, Type 2 , Heart Failure , Mitochondrial Diseases , Humans , Penetrance , Diabetes Mellitus, Type 2/genetics , DNA, Mitochondrial/genetics , Mitochondrial Diseases/genetics , Deafness/genetics , Mutation
2.
J Med Genet ; 60(5): 491-497, 2023 05.
Article in English | MEDLINE | ID: mdl-36109160

ABSTRACT

BACKGROUND: 17q12 microdeletion and microduplication syndromes present as overlapping, multisystem disorders. We assessed the disease phenotypes of individuals with 17q12 CNV in a population-based cohort. METHODS: We investigated 17q12 CNV using microarray data from 450 993 individuals in the UK Biobank and calculated disease status associations for diabetes, liver and renal function, neurological and psychiatric traits. RESULTS: We identified 11 17q12 microdeletions and 106 microduplications. Microdeletions were strongly associated with diabetes (p=2×10-7) but microduplications were not. Estimated glomerular filtration rate (eGFR mL/min/1.73 m2) was consistently lower in individuals with microdeletions (p=3×10-12) and microduplications (p=6×10-25). Similarly, eGFR <60, including end-stage renal disease, was associated with microdeletions (p=2×10-9, p<0.003) and microduplications (p=1×10-9, p=0.009), respectively, highlighting sometimes substantially reduced renal function in each. Microduplications were associated with decreased fluid intelligence (p=3×10-4). SNP association analysis in the 17q12 region implicated changes to HNF1B as causing decreased eGFR (NC_000017.11:g.37741642T>G, rs12601991, p=4×10-21) and diabetes (NC_000017.11:g.37741165C>T, rs7501939, p=6×10-17). A second locus within the region was also associated with fluid intelligence (NC_000017.11:g.36593168T>C, rs1005552, p=6×10-9) and decreased eGFR (NC_000017.11:g.36558947T>C, rs12150665, p=4×10-15). CONCLUSION: We demonstrate 17q12 microdeletions but not microduplications are associated with diabetes in a population-based cohort, likely caused by HNF1B haploinsufficiency. We show that both 17q12 microdeletions and microduplications are associated with renal disease, and multiple genes within the region likely contribute to renal and neurocognitive phenotypes.


Subject(s)
Diabetes Mellitus , Kidney Diseases , Humans , Chromosome Deletion , Kidney Diseases/genetics , Diabetes Mellitus/genetics , Kidney , Phenotype
3.
J Med Genet ; 60(4): 391-396, 2023 04.
Article in English | MEDLINE | ID: mdl-35977816

ABSTRACT

BACKGROUND: Fabry disease is an X-linked lysosomal storage disorder resulting from deficiency of the alpha-galactosidase A enzyme leading to accumulation of globotriaosylceramide in multiple organ sites with prominent cardiovascular and renal involvement. Global prevalence estimates of Fabry disease based on clinical ascertainment range from 1 in 40 000 to 1 in 170 000. We aimed to determine the prevalence of Fabry disease-causing variants in UK Biobank. METHODS: We sought GLA gene variants in exome sequencing data from 200 643 individuals from UK Biobank. We used ACMG/AMP guidelines (American College of Medical Genetics/Association for Molecular Pathology) to classify pathogenicity and compared baseline biomarker data, hospital ICD-10 (International Classification of Diseases version-10) codes, general practitioner records and self-reported health data with those without pathogenic variants. RESULTS: We identified 81 GLA coding variants. We identified eight likely pathogenic variants on the basis of being rare (<1/10 000 individuals) and either previously reported to cause Fabry disease, or being protein-truncating variants. Thirty-six individuals carried one of these variants. In the UK Biobank, the prevalence of likely pathogenic Fabry disease-causing variants is 1/5732 for late-onset disease-causing variants and 1/200 643 for variants causing classic Fabry disease. CONCLUSION: Fabry disease-causing GLA variants are more prevalent in an unselected population sample than the reported prevalence of Fabry disease. These are overwhelmingly variants associated with later onset. It is possible the prevalence of later-onset Fabry disease exceeds current estimates.


Subject(s)
Fabry Disease , Humans , Fabry Disease/epidemiology , Fabry Disease/genetics , Prevalence , Biological Specimen Banks , Mutation/genetics , alpha-Galactosidase/genetics , United Kingdom/epidemiology
4.
PLoS Pathog ; 18(10): e1010860, 2022 10.
Article in English | MEDLINE | ID: mdl-36264855

ABSTRACT

Global banana production is currently challenged by Panama disease, caused by Fusarium oxysporum f.sp. cubense Tropical Race 4 (FocTR4). There are no effective fungicide-based strategies to control this soil-borne pathogen. This could be due to insensitivity of the pathogen to fungicides and/or soil application per se. Here, we test the effect of 12 single-site and 9 multi-site fungicides against FocTR4 and Foc Race1 (FocR1) in quantitative colony growth, and cell survival assays in purified FocTR4 macroconidia, microconidia and chlamydospores. We demonstrate that these FocTR4 morphotypes all cause Panama disease in bananas. These experiments reveal innate resistance of FocTR4 to all single-site fungicides, with neither azoles, nor succinate dehydrogenase inhibitors (SDHIs), strobilurins or benzimidazoles killing these spore forms. We show in fungicide-treated hyphae that this innate resistance occurs in a subpopulation of "persister" cells and is not genetically inherited. FocTR4 persisters respond to 3 µg ml-1 azoles or 1000 µg ml-1 strobilurins or SDHIs by strong up-regulation of genes encoding target enzymes (up to 660-fold), genes for putative efflux pumps and transporters (up to 230-fold) and xenobiotic detoxification enzymes (up to 200-fold). Comparison of gene expression in FocTR4 and Zymoseptoria tritici, grown under identical conditions, reveals that this response is only observed in FocTR4. In contrast, FocTR4 shows little innate resistance to most multi-site fungicides. However, quantitative virulence assays, in soil-grown bananas, reveals that only captan (20 µg ml-1) and all lipophilic cations (200 µg ml-1) suppress Panama disease effectively. These fungicides could help protect bananas from future yield losses by FocTR4.


Subject(s)
Fungicides, Industrial , Fusarium , Musa , Fungicides, Industrial/pharmacology , Succinate Dehydrogenase , Strobilurins , Captan , Xenobiotics , Plant Diseases/genetics , Spores, Fungal , Soil , Azoles , Benzimidazoles
5.
Nat Commun ; 13(1): 5625, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36163135

ABSTRACT

Transitioning from spores to hyphae is pivotal to host invasion by the plant pathogenic fungus Zymoseptoria tritici. This dimorphic switch can be initiated by high temperature in vitro (~27 °C); however, such a condition may induce cellular heat stress, questioning its relevance to field infections. Here, we study the regulation of the dimorphic switch by temperature and other factors. Climate data from wheat-growing areas indicate that the pathogen sporadically experiences high temperatures such as 27 °C during summer months. However, using a fluorescent dimorphic switch reporter (FDR1) in four wild-type strains, we show that dimorphic switching already initiates at 15-18 °C, and is enhanced by wheat leaf surface compounds. Transcriptomics reveals 1261 genes that are up- or down-regulated in hyphae of all strains. These pan-strain core dimorphism genes (PCDGs) encode known effectors, dimorphism and transcription factors, and light-responsive proteins (velvet factors, opsins, putative blue light receptors). An FDR1-based genetic screen reveals a crucial role for the white-collar complex (WCC) in dimorphism and virulence, mediated by control of PCDG expression. Thus, WCC integrates light with biotic and abiotic cues to orchestrate Z. tritici infection.


Subject(s)
Plant Diseases , Sex Characteristics , Ascomycota , Cues , Opsins , Plant Diseases/microbiology , Temperature , Transcription Factors , Triticum/genetics , Triticum/microbiology
6.
Fungal Genet Biol ; 146: 103487, 2021 01.
Article in English | MEDLINE | ID: mdl-33309991

ABSTRACT

The fungus Zymoseptoria tritici causes Septoria tritici leaf blotch, which poses a serious threat to temperate-grown wheat. Recently, we described a raft of molecular tools to study the biology of this fungus in vitro. Amongst these are 5 conditional promoters (Pnar1, Pex1A, Picl1, Pgal7, PlaraB), which allow controlled over-expression or repression of target genes in cells grown in liquid culture. However, their use in the host-pathogen interaction in planta was not tested. Here, we investigate the behaviour of these promoters by quantitative live cell imaging of green-fluorescent protein-expressing cells during 6 stages of the plant infection process. We show that Pnar1 and Picl1 are repressed in planta and demonstrate their suitability for studying essential gene expression and function in plant colonisation. The promoters Pgal7 and Pex1A are not fully-repressed in planta, but are induced during pycnidiation. This indicates the presence of inducing galactose or xylose and/or arabinose, released from the plant cell wall by the activity of fungal hydrolases. In contrast, the PlaraB promoter, which normally controls expression of an α-l-arabinofuranosidase B, is strongly induced inside the leaf. This suggests that the fungus is exposed to L-arabinose in the mesophyll apoplast. Taken together, this study establishes 2 repressible promoters (Pnar1 and Picl1) and three inducible promoters (Pgal7, Pex1A, PlaraB) for molecular studies in planta. Moreover, we provide circumstantial evidence for plant cell wall degradation during the biotrophic phase of Z. tritici infection.


Subject(s)
Ascomycota/genetics , Host-Pathogen Interactions/genetics , Plant Leaves/genetics , Triticum/genetics , Ascomycota/pathogenicity , Genes, Essential/genetics , Green Fluorescent Proteins/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Leaves/microbiology , Promoter Regions, Genetic , Triticum/microbiology
7.
Sci Rep ; 10(1): 8643, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32433535

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Fungal Genet Biol ; 138: 103366, 2020 05.
Article in English | MEDLINE | ID: mdl-32173466

ABSTRACT

The filamentous fungus Trichoderma reesei is a major source of cellulolytic enzymes in biofuel production. Despite its economic relevance, our understanding of its secretory pathways is fragmentary. A major challenge is to visualise the dynamic behaviour of secretory vesicles in living cells. To this end, we establish a location juxtaposing the succinate dehydrogenase locus as a "soft-landing" site for controlled expression of 4 green-fluorescent and 5 red-fluorescent protein-encoding genes (GFPs, RFPs). Quantitative and comparative analysis of their fluorescent signals in living cells demonstrates that codon-optimised monomeric superfolder GFP (TrmsGFP) and codon-optimised mCherry (TrmCherry) combine highest signal intensity with significantly improved signal-to-noise ratios. Finally, we show that integration of plasmid near the sdi1 locus does not affect secretion of cellulase activity in RUT-C30. The molecular and live cell imaging tools generated in this study will help our understanding the secretory pathway in the industrial fungus T. reesei.


Subject(s)
Green Fluorescent Proteins/genetics , Hypocreales , Luminescent Proteins/genetics , Fluorescent Dyes , Fungal Proteins/genetics , Gene Expression , Genes, Fungal , Hypocreales/cytology , Hypocreales/genetics , Intravital Microscopy/methods , Microscopy, Fluorescence/methods , Molecular Biology/methods , Recombinant Proteins/genetics , Trichoderma/cytology , Trichoderma/genetics , Red Fluorescent Protein
9.
Sci Rep ; 9(1): 16217, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31700034

ABSTRACT

Despite its widespread use in aquaculture, the impact of chemical anti-sea lice treatment on salmonids following application in a commercial farm has not been previously reported. This work reports the cumulative effect of three consecutive anti-sea lice treatments using azamethiphos on the health status of aquaculture reared rainbow trout through the investigation of clinical chemistry, histopathology and proteome expression. The serum biomarkers showed decreasing trends in total protein, albumin and potassium concentrations and an average increase of total bilirubin and phosphate concentration towards the end of the treatment period. Principal component analysis clearly distinguished correlated pairs of biomarkers and also demonstrates a shift from acute to chronic effects as treatment progresses. Proteomic analysis confirmed alterations of proteins involved in clot formation, immune reaction and free heme binding. Tissue damage after the series of delousing treatments, exhibited increased deposits of hemosiderin. Results from this study suggest an impact of azamethiphos on trout health through intravascular haemolysis and consequently from pathophysiologic process of haemoglobin metabolism and its products, causing chronic kidney injury from iron deposits. This is the first report to demonstrate in fish the impact of active iron accumulation in different organs from physiological processes that can seriously impair normal function.


Subject(s)
Aquaculture , Copepoda/drug effects , Oncorhynchus mykiss , Animals , Health , Oncorhynchus mykiss/metabolism , Organothiophosphates/adverse effects , Proteomics , Seawater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...