Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 13(2): 498-508, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38295291

ABSTRACT

The development of fluorescent light-up RNA aptamers (FLAPs) has paved the way for the creation of sensors to track RNA in live cells. A major challenge with FLAP sensors is their brightness and limited signal-to-background ratio both in vivo and in vitro. To address this, we develop sensors using the Pepper aptamer, which exhibits superior brightness and photostability when compared to other FLAPs. The sensors are designed to fold into a low fluorescence conformation and to switch to a high fluorescence conformation through toehold or loop-mediated interactions with their RNA target. Our sensors detect RNA targets as short as 20 nucleotides in length with a wide dynamic range over 300-fold in vitro, and we describe strategies for optimizing the sensor's performance for any given RNA target. To demonstrate the versatility of our design approach, we generated Pepper sensors for a range of specific, biologically relevant RNA sequences. Our design and optimization strategies are portable to other FLAPs and offer a promising foundation for future development of RNA sensors with high specificity and sensitivity for detecting RNA biomarkers with multiple applications.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , RNA/genetics , Aptamers, Nucleotide/genetics , Molecular Conformation
2.
Cell ; 187(1): 110-129.e31, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38181737

ABSTRACT

X chromosome inactivation (XCI) serves as a paradigm for RNA-mediated regulation of gene expression, wherein the long non-coding RNA XIST spreads across the X chromosome in cis to mediate gene silencing chromosome-wide. In female naive human pluripotent stem cells (hPSCs), XIST is in a dispersed configuration, and XCI does not occur, raising questions about XIST's function. We found that XIST spreads across the X chromosome and induces dampening of X-linked gene expression in naive hPSCs. Surprisingly, XIST also targets specific autosomal regions, where it induces repressive chromatin changes and gene expression dampening. Thereby, XIST equalizes X-linked gene dosage between male and female cells while inducing differences in autosomes. The dispersed Xist configuration and autosomal localization also occur transiently during XCI initiation in mouse PSCs. Together, our study identifies XIST as the regulator of X chromosome dampening, uncovers an evolutionarily conserved trans-acting role of XIST/Xist, and reveals a correlation between XIST/Xist dispersal and autosomal targeting.


Subject(s)
Genes, X-Linked , RNA, Long Noncoding , X Chromosome , Animals , Female , Humans , Male , Mice , Gene Silencing , RNA, Long Noncoding/genetics , X Chromosome/genetics , Pluripotent Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...