Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Int. microbiol ; 22(3): 337-342, sept. 2019.
Article in English | IBECS | ID: ibc-184840

ABSTRACT

Malaria is one of the most important human diseases throughout tropical and sub-tropical regions of the world. Global distribution and ample host range have contributed to the genetic diversity of the etiological agent, Plasmodium. Phylogeographical analyses demonstrated that Plasmodium falciparum and Plasmodium vivax follow an Out of Africa (OOA) expansion, having a higher genetic diversity in African populations and a low genetic diversity in South American populations. Modeling the evolutionary rate of conserved genes for both P. falciparum and P. vivax determined the approximate arrival of human malaria in South America. Bayesian computational methods suggest that P. falciparum originated in Africa and arrived in South America through multiple independent introductions by the transatlantic African slave trade; however, in South America, P. vivax could have been introduced through an alternate migratory route. Alignments of P. vivax mitogenomes have revealed low genetic variation between the South American and Southeast Asian populations suggesting introduction through either pre-Columbian human migration or post-colonization events. To confirm the findings of these phylogeographical analyses, molecular methods were used to diagnose malaria infection in archeological remains of pre-Columbian ethnic groups. Immunohistochemistry tests were used and identified P. vivax but not P. falciparum in histologically prepared tissues from pre-Columbian Peruvian mummies, whereas shotgun metagenomics sequencing of DNA isolated from pre-Columbian Caribbean coprolites revealed Plasmodium-homologous reads; current evidence suggests that only P. vivax might have been present in pre-Columbian South America


No disponible


Subject(s)
Humans , Malaria, Vivax/parasitology , Molecular Epidemiology , Phylogeography , Plasmodium vivax/classification , Plasmodium vivax/genetics , Caribbean Region/epidemiology , South America/epidemiology
2.
Microb Ecol ; 38(1): 58-68, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10384010

ABSTRACT

> Abstract Claims that organisms can be cultured from amber, if substantiated, would be significant contributions to our understanding of the evolution, tenacity, and potential spread of life. Three reports on the isolation of organisms from amber have been published. Cano and Borucki recently reported the isolation of Bacillus sphaericus and Lambert et al. have described a new species designated Staphylococcus succinus from 25-40 million year old Dominican amber. These characterized organisms were phylogenetically distant from extant relatives and the Staphylococcus sp. sufficiently far removed from other extant staphylococci to be considered a new species. Here we report the culture of bacteria from Dominican and previously untested 120 million year old Israeli (Lebanese lode) amber. Twenty-seven isolates from the amber matrix have been characterized by fatty-acid profiles (FAME) and/or 16S rRNA sequencing. We also performed a terminal restriction fragment pattern (TRF) analysis of the original amber before prolonged culture by consensus primer amplification of the 16S rRNA followed by restriction enzyme digestion of the amplicons. Sample TRFs were consistent with a sparse bacterial assemblage and included at least five of the isolated organisms. Finally, we microscopically mapped the internal topography of an amber slice.http://link.springer-ny.com/link/service/journals/00248/bibs/38n1p58.html

SELECTION OF CITATIONS
SEARCH DETAIL
...