Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Cancer ; 23(1): 83, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38730475

ABSTRACT

BACKGROUND: Active targeting by surface-modified nanoplatforms enables a more precise and elevated accumulation of nanoparticles within the tumor, thereby enhancing drug delivery and efficacy for a successful cancer treatment. However, surface functionalization involves complex procedures that increase costs and timelines, presenting challenges for clinical implementation. Biomimetic nanoparticles (BNPs) have emerged as unique drug delivery platforms that overcome the limitations of actively targeted nanoparticles. Nevertheless, BNPs coated with unmodified cells show reduced functionalities such as specific tumor targeting, decreasing the therapeutic efficacy. Those challenges can be overcome by engineering non-patient-derived cells for BNP coating, but these are complex and cost-effective approaches that hinder their wider clinical application. Here we present an immune-driven strategy to improve nanotherapeutic delivery to tumors. Our unique perspective harnesses T-cell exhaustion and tumor immune evasion to develop a groundbreaking new class of BNPs crafted from exhausted T-cells (NExT) of triple-negative breast cancer (TNBC) patients by specific culture methods without sophisticated engineering. METHODS: NExT were generated by coating PLGA (poly(lactic-co-glycolic acid)) nanoparticles with TNBC-derived T-cells exhausted in vitro by acute activation. Physicochemical characterization of NExT was made by dynamic light scattering, electrophoretic light scattering and transmission electron microscopy, and preservation and orientation of immune checkpoint receptors by flow cytometry. The efficacy of chemotherapy-loaded NExT was assessed in TNBC cell lines in vitro. In vivo toxicity was made in CD1 mice. Biodistribution and therapeutic activity of NExT were determined in cell-line- and autologous patient-derived xenografts in immunodeficient mice. RESULTS: We report a cost-effective approach with a good performance that provides NExT naturally endowed with immune checkpoint receptors (PD1, LAG3, TIM3), augmenting specific tumor targeting by engaging cognate ligands, enhancing the therapeutic efficacy of chemotherapy, and disrupting the PD1/PDL1 axis in an immunotherapy-like way. Autologous patient-derived NExT revealed exceptional intratumor accumulation, heightened chemotherapeutic index and efficiency, and targeted the tumor stroma in a PDL1+ patient-derived xenograft model of triple-negative breast cancer. CONCLUSIONS: These advantages underline the potential of autologous patient-derived NExT to revolutionize tailored adoptive cancer nanotherapy and chemoimmunotherapy, which endorses their widespread clinical application of autologous patient-derived NExT.


Subject(s)
Nanoparticles , T-Lymphocytes , Humans , Animals , Mice , Nanoparticles/chemistry , Female , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Line, Tumor , Immune Evasion , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
2.
Anal Chem ; 94(30): 10626-10635, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35866879

ABSTRACT

Barcoding and pooling cells for processing as a composite sample are critical to minimize technical variability in multiplex technologies. Fluorescent cell barcoding has been established as a standard method for multiplexing in flow cytometry analysis. In parallel, mass-tag barcoding is routinely used to label cells for mass cytometry. Barcode reagents currently used label intracellular proteins in fixed and permeabilized cells and, therefore, are not suitable for studies with live cells in long-term culture prior to analysis. In this study, we report the development of fluorescent palladium-based hybrid-tag nanotrackers to barcode live cells for flow and mass cytometry dual-modal readout. We describe the preparation, physicochemical characterization, efficiency of cell internalization, and durability of these nanotrackers in live cells cultured over time. In addition, we demonstrate their compatibility with standardized cytometry reagents and protocols. Finally, we validated these nanotrackers for drug response assays during a long-term coculture experiment with two barcoded cell lines. This method represents a new and widely applicable advance for fluorescent and mass-tag barcoding that is independent of protein expression levels and can be used to label cells before long-term drug studies.


Subject(s)
Electronic Data Processing , Fluorescent Dyes , Cell Line , Flow Cytometry/methods , Fluorescent Dyes/chemistry , Proteomics
3.
Talanta ; 226: 122092, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33676649

ABSTRACT

Nucleic acid-based molecular diagnosis has gained special importance for the detection and early diagnosis of genetic diseases as well as for the control of infectious disease outbreaks. The development of systems that allow for the detection and analysis of nucleic acids in a low-cost and easy-to-use way is of great importance. In this context, we present a combination of a nanotechnology-based approach with the already validated dynamic chemical labeling (DCL) technology, capable of reading nucleic acids with single-base resolution. This system allows for the detection of biotinylated molecular products followed by simple detection using a standard flow cytometer, a widely used platform in clinical and molecular laboratories, and therefore, is easy to implement. This proof-of-concept assay has been developed to detect mutations in KRAS codon 12, as these mutations are highly important in cancer development and cancer treatments.


Subject(s)
Nucleic Acids , Peptide Nucleic Acids , Flow Cytometry , Mutation , Nanotechnology , Nucleic Acids/genetics
4.
ACS Omega ; 3(1): 144-153, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-30023770

ABSTRACT

Herein, we describe the synthesis and application of cross-linked polystyrene-based dual-function nano- and microparticles containing both fluorescent tags and metals. Despite containing a single dye, these particles exhibit a characteristic dual-band fluorescence emission. Moreover, these particles can be combined with different metal ions to obtain hybrid metallofluorescent particles. We demonstrate that these particles are easily nanofected into living cells, allowing them to be used for effective fingerprinting in multimodal fluorescence-based and mass spectrometry-based flow cytometry experiments. Likewise, the in situ reductions of the metal ions enable other potential uses of the particles as heterogeneous catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...