Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Plants ; 9(4): 661-672, 2023 04.
Article in English | MEDLINE | ID: mdl-36997687

ABSTRACT

Chloroplasts are a common feature of plant cells and aspects of their metabolism, including photosynthesis, are influenced by low-temperature conditions. Chloroplasts contain a small circular genome that encodes essential components of the photosynthetic apparatus and chloroplast transcription/translation machinery. Here, we show that in Arabidopsis, a nuclear-encoded sigma factor that controls chloroplast transcription (SIGMA FACTOR5) contributes to adaptation to low-temperature conditions. This process involves the regulation of SIGMA FACTOR5 expression in response to cold by the bZIP transcription factors ELONGATED HYPOCOTYL5 and ELONGATED HYPOCOTYL5 HOMOLOG. The response of this pathway to cold is gated by the circadian clock, and it enhances photosynthetic efficiency during long-term cold and freezing exposure. We identify a process that integrates low-temperature and circadian signals, and modulates the response of chloroplasts to low-temperature conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Sigma Factor/genetics , Sigma Factor/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Temperature , Arabidopsis/metabolism , Photosynthesis , Gene Expression Regulation, Plant
2.
Cells ; 10(10)2021 10 17.
Article in English | MEDLINE | ID: mdl-34685758

ABSTRACT

The lipid matrix in cell membranes is a dynamic, bidimensional array of amphipathic molecules exhibiting mesomorphism, which contributes to the membrane fluidity changes in response to temperature fluctuation. As sessile organisms, plants must rapidly and accurately respond to environmental thermal variations. However, mechanisms underlying temperature perception in plants are poorly understood. We studied the thermal plasticity of membrane fluidity using three fluorescent probes across a temperature range of -5 to 41 °C in isolated microsomal fraction (MF), vacuolar membrane (VM), and plasma membrane (PM) vesicles from Arabidopsis plants. Results showed that PM were highly fluid and exhibited more phase transitions and hysteresis, while VM and MF lacked such attributes. These findings suggest that PM is an important cell hub with the capacity to rapidly undergo fluidity modifications in response to small changes of temperatures in ranges spanning those experienced in natural habitats. PM fluidity behaves as an ideal temperature detector: it is always present, covers the whole cell, responds quickly and with sensitivity to temperature variations, functions with a cell free-energy cost, and it is physically connected with potential thermal signal transducers to elicit a cell response. It is an optimal alternative for temperature detection selected for the plant kingdom.


Subject(s)
Arabidopsis/physiology , Cell Membrane/physiology , Membrane Fluidity/physiology , Arabidopsis/ultrastructure , Cell Membrane/ultrastructure , Fluorescent Dyes/metabolism , Temperature , Vacuoles/metabolism , Vacuoles/ultrastructure
3.
Curr Biol ; 28(16): 2597-2606.e6, 2018 08 20.
Article in English | MEDLINE | ID: mdl-30078562

ABSTRACT

Synchronization of circadian clocks to the day-night cycle ensures the correct timing of biological events. This entrainment process is essential to ensure that the phase of the circadian oscillator is synchronized with daily events within the environment [1], to permit accurate anticipation of environmental changes [2, 3]. Entrainment in plants requires phase changes in the circadian oscillator, through unidentified pathways, which alter circadian oscillator gene expression in response to light, temperature, and sugars [4-6]. To determine how circadian clocks respond to metabolic rhythms, we investigated the mechanisms by which sugars adjust the circadian phase in Arabidopsis [5]. We focused upon metabolic regulation because interactions occur between circadian oscillators and metabolism in several experimental systems [5, 7-9], but the molecular mechanisms are unidentified. Here, we demonstrate that the transcription factor BASIC LEUCINE ZIPPER63 (bZIP63) regulates the circadian oscillator gene PSEUDO RESPONSE REGULATOR7 (PRR7) to change the circadian phase in response to sugars. We find that SnRK1, a sugar-sensing kinase that regulates bZIP63 activity and circadian period [10-14] is required for sucrose-induced changes in circadian phase. Furthermore, TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1), which synthesizes the signaling sugar trehalose-6-phosphate, is required for circadian phase adjustment in response to sucrose. We demonstrate that daily rhythms of energy availability can entrain the circadian oscillator through the function of bZIP63, TPS1, and the KIN10 subunit of the SnRK1 energy sensor. This identifies a molecular mechanism that adjusts the circadian phase in response to sugars.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Basic-Leucine Zipper Transcription Factors/genetics , Circadian Clocks/genetics , Repressor Proteins/genetics , Sugars/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Repressor Proteins/metabolism , Sucrose/metabolism , Sugar Phosphates/metabolism , Trehalose/analogs & derivatives , Trehalose/metabolism
4.
Curr Biol ; 28(16): R869-R870, 2018 08 20.
Article in English | MEDLINE | ID: mdl-30130504

ABSTRACT

Marimo are unusual, attractive and endangered spherical aggregations of the filamentous green macroalga Aegagropila linnaei (Figure 1A-E) [1]. Globally rare, marimo populations persist in cold freshwater lakes in Japan, Iceland and Ukraine. Marimo occupy both the lake bed and rise to the lake surface [2,3]. Here, we show that marimo buoyancy is conferred by bubbles arising from photosynthesis. We find that light-induced acquisition of buoyancy by marimo is circadian-regulated. We identify that there are circadian rhythms of photosynthesis in marimo, which might explain the circadian rhythm of buoyancy in response to light. This identifies a circadian-regulated buoyancy response in an intriguing and little-studied plant.


Subject(s)
Chlorophyta/physiology , Circadian Rhythm/physiology , Photosynthesis/physiology , Seaweed/physiology , Biomass , Environment , Lakes , Movement
5.
Plant Cell Environ ; 41(11): 2515-2517, 2018 11.
Article in English | MEDLINE | ID: mdl-29785736

ABSTRACT

This article comments on: Circadian rhythms are associated with variation in photosystem II function and photoprotective mechanisms.


Subject(s)
Photosynthesis , Photosystem II Protein Complex , Circadian Rhythm , Etiolation
6.
Front Plant Sci ; 5: 3, 2014.
Article in English | MEDLINE | ID: mdl-24478783

ABSTRACT

Plasmodesmata-intercellular channels that communicate adjacent cells-possess complex membranous structures. Recent evidences indicate that plasmodesmata contain membrane microdomains. In order to understand how these submembrane regions collaborate to plasmodesmata function, it is necessary to characterize their size, composition and dynamics. An approach that can shed light on these microdomain features is based on the use of Arabidopsis mutants in sphingolipid synthesis. Sphingolipids are canonical components of microdomains together with sterols and some glycerolipids. Moreover, sphingolipids are transducers in pathways that display programmed cell death as a defense mechanism against pathogens. The study of Arabidopsis mutants would allow determining which structural features of the sphingolipids are important for the formation and stability of microdomains, and if defense signaling networks using sphingoid bases as second messengers are associated to plasmodesmata operation. Such studies need to be complemented by analysis of the ultrastructure and the use of protein probes for plasmodesmata microdomains and may constitute a very valuable source of information to analyze these membrane structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...