Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 12(3)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36986290

ABSTRACT

(1) Background: Chagas disease is the main neglected tropical disease in America. It is estimated that around 6 million people are currently infected with the parasite in Latin America, and 25 million live in endemic areas with active transmission. The disease causes an estimated economic loss of USD 24 billion dollars annually, with a loss of 75,200 working years per year of life; it is responsible for around ~12,000 deaths annually. Although Mexico is an endemic country that recorded 10,186 new cases of Chagas disease during the period of 1990-2017, few studies have evaluated the genetic diversity of genes that could be involved in the prophylaxis and/or diagnosis of the parasite. One of the possible candidates proposed as a vaccine target is the 24 kDa trypomastigote excretory-secretory protein, Tc24, whose protection is linked to the stimulation of T. cruzi-specific CD8+ immune responses. (2) Methods: The aim of the present study was to evaluate the fine-scale genetic diversity and structure of Tc24 in T. cruzi isolates from Mexico, and to compare them with other populations reported in the Americas with the aim to reconsider the potential role of Tc24 as a key candidate for the prophylaxis and improvement of the diagnosis of Chagas disease in Mexico. (3) Results: Of the 25 Mexican isolates analysed, 48% (12) were recovered from humans and 24% (6) recovered from Triatoma barberi and Triatoma dimidiata. Phylogenetic inferences revealed a polytomy in the T. cruzi clade with two defined subgroups, one formed by all sequences of the DTU I and the other formed by DTU II-VI; both subgroups had high branch support. Genetic population analysis detected a single (monomorphic) haplotype of TcI throughout the entire distribution across both Mexico and South America. This information was supported by Nei's pairwise distances, where the sequences of TcI showed no genetic differences. (4) Conclusions: Given that both previous studies and the findings of the present work confirmed that TcI is the only genotype detected from human isolates obtained from various states of Mexico, and that there is no significant genetic variability in any of them, it is possible to propose the development of in silico strategies for the production of antigens that optimise the diagnosis of Chagas disease, such as quantitative ELISA methods that use this region of Tc24.

2.
Int J Infect Dis ; 105: 83-90, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33581365

ABSTRACT

OBJECTIVES: The aim of this study was to investigate the feasibility of saliva sampling as a non-invasive and safer tool to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to compare its reproducibility and sensitivity with nasopharyngeal swab samples (NPS). The use of sample pools was also investigated. METHODS: A total of 2107 paired samples were collected from asymptomatic healthcare and office workers in Mexico City. Sixty of these samples were also analyzed in two other independent laboratories for concordance analysis. Sample processing and analysis of virus genetic material were performed according to standard protocols described elsewhere. A pooling analysis was performed by analyzing the saliva pool and the individual pool components. RESULTS: The concordance between NPS and saliva results was 95.2% (kappa 0.727, p = 0.0001) and 97.9% without considering inconclusive results (kappa 0.852, p = 0.0001). Saliva had a lower number of inconclusive results than NPS (0.9% vs 1.9%). Furthermore, saliva showed a significantly higher concentration of both total RNA and viral copies than NPS. Comparison of our results with those of the other two laboratories showed 100% and 97% concordance. Saliva samples are stable without the use of any preservative, and a positive SARS-CoV-2 sample can be detected 5, 10, and 15 days after collection when the sample is stored at 4 °C. CONCLUSIONS: The study results indicate that saliva is as effective as NPS for the identification of SARS-CoV-2-infected asymptomatic patients. Sample pooling facilitates the analysis of a larger number of samples, with the benefit of cost reduction.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Saliva/virology , Cross-Sectional Studies , Humans , Nasopharynx/virology , Reproducibility of Results , Specimen Handling
3.
Emerg Infect Dis ; 25(12): 2315-2317, 2019 12.
Article in English | MEDLINE | ID: mdl-31742525

ABSTRACT

We found Rickettsia parkeri in Amblyomma ovale ticks collected in Veracruz, Mexico, in 2018. We sequenced gene segments of gltA, htrA, sca0, and sca5; phylogenetic reconstruction revealed near-complete identity with R. parkeri strain Atlantic Rainforest. Enhanced surveillance is needed in Mexico to determine the public health relevance of this bacterium.


Subject(s)
Rickettsia/classification , Rickettsia/genetics , Tick Infestations/epidemiology , Ticks/microbiology , Animals , Female , Genes, Bacterial , Male , Mexico/epidemiology , Phylogeny , Public Health Surveillance
SELECTION OF CITATIONS
SEARCH DETAIL
...