Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 13(1): 14089, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37640771

ABSTRACT

Left ventricular (LV) myocardial mass is important in the evaluation of cardiac remodeling and requires accurate assessment when performed on linear measurements in two-dimensional echocardiography (Echo). We aimed to compare the accuracy of the Devereaux formula (DEV) and the Teichholz formula (TEICH) in calculating LV myocardial mass in Echo using cardiac magnetic resonance (CMR) as the reference method. Based on preceding mathematical calculations, we identified primarily LV size rather than wall thickness as the main source of bias between DEV and TEICH in a retrospective derivation cohort (n = 1276). Although LV mass from DEV and TEICH were correlated with CMR, TEICH did not show a proportional bias as did DEV (- 2 g/m2 vs. + 22 g/m2). This could be validated in an independent prospective cohort (n = 226) with symptomatic non-ischemic heart failure. DEV systematically overestimated LV mass in all tiers of LV remodeling as compared to TEICH. In conclusion, the TEICH method accounts for the changes in LV geometry with increasing LV mass and thus better reflects the different pattern of LV remodeling than the DEV method. This has important clinical implications, as TEICH may be more appropriate for use in clinical practice, rather than DEV, currently recommended.


Subject(s)
Heart Failure , Heart , Humans , Prospective Studies , Retrospective Studies , Magnetic Resonance Imaging , Myocardium
3.
Comput Methods Biomech Biomed Engin ; 25(15): 1767-1783, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35238688

ABSTRACT

The current study aims to investigate the role of mechano-electric feedback (MEF) in healthy cardiac cycles and in cardiac arrhythmia using human ventricular models. The numerical formulation of stretch-activated channels (SACs) in terms of the fibre stretch of the myocardium is incorporated into the modified Hill model that describes the myocardium as an electro-visco-active material. Additionally, we propose models of SACs formulated in terms of the rate of stretch along fibre direction and the stretch along sheet direction. We analyze the effect of the three different models for SACs and different material properties on the regular cycles by using electrocardiogram and volume-time curves, and show that the each model of SACs has regionally different influences on the heart model. Moreover, we simulate 'commotio cordis' and 'precordial thump' and demonstrate that MEF plays a major role in the occurrence of fibrillation and defibrillation in the absence of the structural cardiac damage. Furthermore, we study the role of MEF in premature ventricular contraction when the blood pressure is disturbed.


Subject(s)
Arrhythmias, Cardiac , Heart Ventricles , Humans , Feedback , Heart/physiology , Computer Simulation
4.
Int J Numer Method Biomed Eng ; 38(5): e3589, 2022 05.
Article in English | MEDLINE | ID: mdl-35266643

ABSTRACT

Conduction velocity error is often the main culprit behind the need for very fine spatial discretizations and high computational effort in cardiac electrophysiology problems. In light of this, a novel approach for simulating an accurate conduction velocity in coarse meshes with linear elements is suggested based on a modified quadrature approach. In this approach, the quadrature points are placed at arbitrary offsets of the isoparametric coordinates. A numerical study illustrates the dependence of the conduction velocity on the spatial discretization and the conductivity when using different quadrature rules and calculation approaches. Additionally, examples using the modified quadrature in coarse meshes for wave propagation demonstrate the improved accuracy of the conduction velocity with this method. This novel approach possesses great potential in reducing the computational effort required but remains limited to specific linear elements and experiences a reduction in accuracy for irregular meshes and heterogeneous conductivities. Further research can focus on developing an adaptive quadrature and extending the approach to other element formulations in order to make the approach more generally applicable.


Subject(s)
Electrophysiologic Techniques, Cardiac , Models, Cardiovascular , Cardiac Electrophysiology , Electrophysiological Phenomena
5.
Int J Numer Method Biomed Eng ; 37(5): e3443, 2021 05.
Article in English | MEDLINE | ID: mdl-33522111

ABSTRACT

Millions of degrees of freedom are often required to accurately represent the electrophysiology of the myocardium due to the presence of discretization effects. This study seeks to explore the influence of temporal and spatial discretization on the simulation of cardiac electrophysiology in conjunction with changes in modeling choices. Several finite element analyses are performed to examine how discretization affects solution time, conduction velocity and electrical excitation. Discretization effects are considered along with changes in the electrophysiology model and solution approach. Two action potential models are considered: the Aliev-Panfilov model and the ten Tusscher-Noble-Noble-Panfilov model. The solution approaches consist of two time integration schemes and different treatments for solving the local system of ordinary differential equations. The efficiency and stability of the calculation approaches are demonstrated to be dependent on the action potential model. The dependency of the conduction velocity on the element size and time step is shown to be different for changes in material parameters. Finally, the discrepancies between the wave propagation in coarse and fine meshes are analyzed based on the temporal evolution of the transmembrane potential at a node and its neighboring Gauss points. Insight obtained from this study can be used to suggest new methods to improve the efficiency of simulations in cardiac electrophysiology.


Subject(s)
Heart , Models, Cardiovascular , Cardiac Electrophysiology , Computer Simulation , Electrophysiologic Techniques, Cardiac
SELECTION OF CITATIONS
SEARCH DETAIL
...