Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 6327, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491152

ABSTRACT

Long-term demographic studies at biogeographic transition zones can elucidate how body size mediates disturbance responses. Focusing on subtropical reefs in eastern Australia, we examine trends in the size-structure of corals with contrasting life-histories and zoogeographies surrounding the 2016 coral bleaching event (2010-2019) to determine their resilience and recovery capacity. We document demographic shifts, with disproportionate declines in the number of small corals and long-term persistence of larger corals. The incidence of bleaching (Pocillopora, Turbinaria) and partial mortality (Acropora, Pocillopora) increased with coral size, and bleached corals had greater risk of partial mortality. While endemic Pocillopora experienced marked declines, decadal stability of Turbinaria despite bleaching, coupled with abundance increase and bleaching resistance in Acropora indicate remarkable resilience of these taxa in the subtropics. Declines in the number of small corals and variable associations with environmental drivers indicate bottlenecks to recovery mediated by inhibitory effects of thermal extremes for Pocillopora (heat stress) and Acropora (heat and cold stress), and stimulatory effects of chlorophyll-a for Turbinaria. Although our study reveals signs of resilience, it foreshadows the vulnerability of subtropical corals to changing disturbance regimes that include marine heatwaves. Disparity in population dynamics suggest that subtropical reefs are ecologically distinct from tropical coral reefs.


Subject(s)
Anthozoa , Animals , Anthozoa/physiology , Coral Reefs , Population Dynamics , Chlorophyll A , Heat-Shock Response
2.
Ecology ; 104(9): e4138, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37458125

ABSTRACT

The persistent exposure of coral assemblages to more variable abiotic regimes is assumed to augment their resilience to future climatic variability. Yet, while the determinants of coral population resilience across species remain unknown, we are unable to predict the winners and losers across reef ecosystems exposed to increasingly variable conditions. Using annual surveys of 3171 coral individuals across Australia and Japan (2016-2019), we explore spatial variation across the short- and long-term dynamics of competitive, stress-tolerant, and weedy assemblages to evaluate how abiotic variability mediates the structural composition of coral assemblages. We illustrate how, by promoting short-term potential over long-term performance, coral assemblages can reduce their vulnerability to stochastic environments. However, compared to stress-tolerant, and weedy assemblages, competitive coral taxa display a reduced capacity for elevating their short-term potential. Accordingly, future climatic shifts threaten the structural complexity of coral assemblages in variable environments, emulating the degradation expected across global tropical reefs.


Subject(s)
Anthozoa , Humans , Animals , Ecosystem , Coral Reefs , Australia , Japan
3.
Ecol Lett ; 26(7): 1186-1199, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37158011

ABSTRACT

Escalating climatic and anthropogenic pressures expose ecosystems worldwide to increasingly stochastic environments. Yet, our ability to forecast the responses of natural populations to this increased environmental stochasticity is impeded by a limited understanding of how exposure to stochastic environments shapes demographic resilience. Here, we test the association between local environmental stochasticity and the resilience attributes (e.g. resistance, recovery) of 2242 natural populations across 369 animal and plant species. Contrary to the assumption that past exposure to frequent environmental shifts confers a greater ability to cope with current and future global change, we illustrate how recent environmental stochasticity regimes from the past 50 years do not predict the inherent resistance or recovery potential of natural populations. Instead, demographic resilience is strongly predicted by the phylogenetic relatedness among species, with survival and developmental investments shaping their responses to environmental stochasticity. Accordingly, our findings suggest that demographic resilience is a consequence of evolutionary processes and/or deep-time environmental regimes, rather than recent-past experiences.


Subject(s)
Ecosystem , Plants , Animals , Phylogeny , Stochastic Processes , Population Dynamics
4.
Ecol Lett ; 25(6): 1566-1579, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35334148

ABSTRACT

Accelerating rates of biodiversity loss underscore the need to understand how species achieve resilience-the ability to resist and recover from a/biotic disturbances. Yet, the factors determining the resilience of species remain poorly understood, due to disagreements on its definition and the lack of large-scale analyses. Here, we investigate how the life history of 910 natural populations of animals and plants predicts their intrinsic ability to be resilient. We show that demographic resilience can be achieved through different combinations of compensation, resistance and recovery after a disturbance. We demonstrate that these resilience components are highly correlated with life history traits related to the species' pace of life and reproductive strategy. Species with longer generation times require longer recovery times post-disturbance, whilst those with greater reproductive capacity have greater resistance and compensation. Our findings highlight the key role of life history traits to understand species resilience, improving our ability to predict how natural populations cope with disturbance regimes.


Subject(s)
Biodiversity , Life History Traits , Animals , Demography , Plants , Reproduction
5.
J Anim Ecol ; 90(1): 233-247, 2021 01.
Article in English | MEDLINE | ID: mdl-32920820

ABSTRACT

Subtropical coral assemblages are threatened by similar extreme thermal stress events to their tropical counterparts. Yet, the mid- and long-term thermal stress responses of corals in subtropical environments remain largely unquantified, limiting our capacity to predict their future viability. The annual survival, growth and recruitment of 311 individual corals within the Solitary Islands Marine Park (Australia) was recorded over a 3-year period (2016-2018), including the 2015/2016 thermal stress event. These data were used to parameterise integral projection models quantifying the effect of thermal stress within a subtropical coral assemblage. Stochastic simulations were also applied to evaluate the implications of recurrent thermal stress scenarios predicted by four different Representative Concentration Pathways. We report differential shifts in population growth rates (λ) among coral populations during both stress and non-stress periods, confirming contrasting bleaching responses among taxa. However, even during non-stress periods, the observed dynamics for all taxa were unable to maintain current community composition, highlighting the need for external recruitment sources to support the community structure. Across all coral taxa, projected stochastic growth rates (λs ) were found to be lowest under higher emissions scenarios. Correspondingly, predicted increases in recurrent thermal stress regimes may accelerate the loss of coral coverage, species diversity and structural complexity within subtropical regions. We suggest that these trends are primarily due to the susceptibility of subtropical specialists and endemic species, such as Pocillopora aliciae, to thermal stress. Similarly, the viability of many tropical coral populations at higher latitudes is highly dependent on the persistence of up-current tropical systems. As such, the inherent dynamics of subtropical coral populations appear unable to support their future persistence under unprecedented thermal disturbance scenarios.


Subject(s)
Anthozoa , Animals , Australia , Coral Reefs , Islands
SELECTION OF CITATIONS
SEARCH DETAIL
...