Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 18(22): 6260-70, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23035210

ABSTRACT

PURPOSE: Deregulated expression of miRNAs has been shown in multiple myeloma (MM). A promising strategy to achieve a therapeutic effect by targeting the miRNA regulatory network is to enforce the expression of miRNAs that act as tumor suppressor genes, such as miR-34a. EXPERIMENTAL DESIGN: Here, we investigated the therapeutic potential of synthetic miR-34a against human MM cells in vitro and in vivo. RESULTS: Either transient expression of miR-34a synthetic mimics or lentivirus-based miR-34a-stable enforced expression triggered growth inhibition and apoptosis in MM cells in vitro. Synthetic miR-34a downregulated canonic targets BCL2, CDK6, and NOTCH1 at both the mRNA and protein level. Lentiviral vector-transduced MM xenografts with constitutive miR-34a expression showed high growth inhibition in severe combined immunodeficient (SCID) mice. The anti-MM activity of lipidic-formulated miR-34a was further shown in vivo in two different experimental settings: (i) SCID mice bearing nontransduced MM xenografts; and (ii) SCID-synth-hu mice implanted with synthetic 3-dimensional scaffolds reconstituted with human bone marrow stromal cells and then engrafted with human MM cells. Relevant tumor growth inhibition and survival improvement were observed in mice bearing TP53-mutated MM xenografts treated with miR-34a mimics in the absence of systemic toxicity. CONCLUSIONS: Our findings provide a proof-of-principle that formulated synthetic miR-34a has therapeutic activity in preclinical models and support a framework for development of miR-34a-based treatment strategies in MM patients.


Subject(s)
MicroRNAs/genetics , Multiple Myeloma/therapy , Animals , Apoptosis , Cell Line , Cell Proliferation , Genes, Tumor Suppressor , Genetic Therapy , Humans , Lentivirus/genetics , Male , Mice , Mice, SCID , MicroRNAs/biosynthesis , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Neoplasm Transplantation , RNA Interference , Transduction, Genetic , Transfection , Tumor Burden , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...