Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 13(3)2022 03 21.
Article in English | MEDLINE | ID: mdl-35328108

ABSTRACT

Some of the key genes and regulatory mechanisms controlling drought response in durum wheat have been identified. One of the major challenges for breeders is how to use this knowledge for the achievement of drought stress tolerance. In the present study, we report the expression profiles of the TdDRF1 gene, at consecutive plant growth stages, from different durum wheat genotypes evaluated in two different field environments. The expression of a possible target gene (Wdnh13) of the TdDRF1 gene was also investigated and analogies with the transcript profiles were found. The results of the qRT-PCR highlighted differences in molecular patterns, thus suggesting a genotype dependency of the TdDRF1 gene expression in response to the stress induced. Furthermore, a statistical association between the expression of TdDRF1 transcripts and agronomic traits was also performed and significant differences were found among genotypes, suggesting a relationship. One of the genotypes was found to combine molecular and agronomic characteristics.


Subject(s)
Plant Proteins , Triticum , Droughts , Genotype , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Microorganisms ; 9(2)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669534

ABSTRACT

A growing body of evidence demonstrates the potential of various microbes to enhance plant productivity in cropping systems although their successful field application may be impaired by several biotic and abiotic constraints. In the present work, we aimed at developing multifunctional synthetic microbial consortia to be used in combination with suitable bioactive compounds for improving crop yield and quality. Plant growth-promoting microorganisms (PGPMs) with different functional attributes were identified by a bottom-up approach. A comprehensive literature survey on PGPMs associated with maize, wheat, potato and tomato, and on commercial formulations, was conducted by examining peer-reviewed scientific publications and results from relevant European projects. Metagenome fragment recruitments on genomes of potential PGPMs represented in databases were also performed to help identify plant growth-promoting (PGP) strains. Following evidence of their ability to coexist, isolated PGPMs were synthetically assembled into three different microbial consortia. Additionally, the effects of bioactive compounds on the growth of individually PGPMs were tested in starvation conditions. The different combination products based on microbial and non-microbial biostimulants (BS) appear worth considering for greenhouse and open field trials to select those potentially adoptable in sustainable agriculture.

3.
Front Plant Sci ; 12: 782072, 2021.
Article in English | MEDLINE | ID: mdl-34987533

ABSTRACT

This study aims to highlight the major effects of biochar incorporation into potting soil substrate on plant growth and performance in early growth stages of five elite Italian varieties of durum wheat (Triticum durum). The biochars used were obtained from two contrasting feedstocks, namely wood chips and wheat straw, by gasification under high temperature conditions, and were applied in a greenhouse experiment either as pure or as nutrient-activated biochar obtained by incubation with digestate. The results of the experiment showed that specific genotypes as well as different treatments with biochar have significant effects on plant response when looking at shoot traits related to growth. The evaluated genotypes could be clustered in two main distinct groups presenting, respectively, significantly increasing (Duilio, Iride, and Saragolla varieties) and decreasing (Marco Aurelio and Grecale varieties) values of projected shoot system area (PSSA), fresh weight (FW), dry weight (DW), and plant water loss by evapotranspiration (ET). All these traits were correlated with Pearson correlation coefficients ranging from 0.74 to 0.98. Concerning the treatment effect, a significant alteration of the mentioned plant traits was observed when applying biochar from wheat straw, characterized by very high electrical conductivity (EC), resulting in a reduction of 34.6% PSSA, 43.2% FW, 66.9% DW, and 36.0% ET, when compared to the control. Interestingly, the application of the same biochar after nutrient spiking with digestate determined about a 15-30% relief from the abovementioned reduction induced by the application of the sole pure wheat straw biochar. Our results reinforce the current basic knowledge available on biological soil amendments as biochar and digestate.

4.
Planta ; 247(2): 459-469, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29075873

ABSTRACT

MAIN CONCLUSION: A and B genome copies of DRF1 gene in durum wheat were isolated and sequenced using gene variability. B genome specific polymorphism resulted, in a RIL population, in relationship with grain yield mainly in drought condition. Drought tolerance is one of the main components of yield potential and stability, and its improvement is a major challenge to breeders. Transcription factors are considered among the best candidate genes for developing functional markers, since they are components of the signal transduction pathways that coordinate the expression of several downstream genes. Polymorphisms of the Triticum durum dehydration responsive factor 1 (TdDRF1) gene that belongs to DREB2 transcription factor family were identified and specifically assigned to the A or B genome. A panel of primers was derived to selectively isolate the corresponding gene copies. These molecular information were also used to develop a new molecular marker: an allele-specific PCR assay discriminating two genotypes (Mohawk and Cocorit) was developed and used for screening a durum wheat recombinant inbred line population (RIL-pop) derived from the above genotypes. Phenotypic data from the RIL-pop grown during two seasons, under different environmental conditions, adopting an α-lattice design with two repetitions, were collected, analyzed and correlated with molecular data from the PCR assay. A significant association between a specific polymorphism in the B genome copy of the TdDRF1 gene and the grain yield in drought conditions were observed.


Subject(s)
Polymorphism, Genetic/genetics , Quantitative Trait Loci/genetics , Transcription Factors/genetics , Triticum/genetics , Alleles , Dehydration , Droughts , Edible Grain , Genotype , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological , Transcription Factors/metabolism , Triticum/growth & development , Triticum/metabolism
6.
PLoS One ; 11(6): e0156807, 2016.
Article in English | MEDLINE | ID: mdl-27355625

ABSTRACT

Chronic airway infection is a hallmark feature of cystic fibrosis (CF) disease. In the present study, sputum samples from CF patients were collected and characterized by 16S rRNA gene-targeted approach, to assess how lung microbiota composition changes following a severe decline in lung function. In particular, we compared the airway microbiota of two groups of patients with CF, i.e. patients with a substantial decline in their lung function (SD) and patients with a stable lung function (S). The two groups showed a different bacterial composition, with SD patients reporting a more heterogeneous community than the S ones. Pseudomonas was the dominant genus in both S and SD patients followed by Staphylococcus and Prevotella. Other than the classical CF pathogens and the most commonly identified non-classical genera in CF, we found the presence of the unusual anaerobic genus Sneathia. Moreover, the oligotyping analysis revealed the presence of other minor genera described in CF, highlighting the polymicrobial nature of CF infection. Finally, the analysis of correlation and anti-correlation networks showed the presence of antagonism and ecological independence between members of Pseudomonas genus and the rest of CF airways microbiota, with S patients showing a more interconnected community in S patients than in SD ones. This population structure suggests a higher resilience of S microbiota with respect to SD, which in turn may hinder the potential adverse impact of aggressive pathogens (e.g. Pseudomonas). In conclusion, our findings shed a new light on CF airway microbiota ecology, improving current knowledge about its composition and polymicrobial interactions in patients with CF.


Subject(s)
Cystic Fibrosis/microbiology , Lung/microbiology , Microbiota , Sputum/microbiology , Adolescent , Adult , Child , Ecology , Female , Humans , Italy , Lung/physiopathology , Male , Middle Aged , Phylogeny , Prevotella , Pseudomonas , RNA, Ribosomal, 16S/genetics , Respiratory Function Tests , Respiratory Physiological Phenomena , Sequence Analysis, DNA , Staphylococcus , Young Adult
7.
PLoS One ; 11(3): e0151187, 2016.
Article in English | MEDLINE | ID: mdl-26990297

ABSTRACT

Phenylalanine Ammonia Lyase (PAL) gene which plays a key role in bio-synthesis of medicinally important compounds, Rutin/quercetin was sequence characterized for its efficient genomics application. These compounds possessing anti-diabetic and anti-cancer properties and are predominantly produced by Fagopyrum spp. In the present study, PAL gene was sequenced from three Fagopyrum spp. (F. tataricum, F. esculentum and F. dibotrys) and showed the presence of three SNPs and four insertion/deletions at intra and inter specific level. Among them, the potential SNP (position 949th bp G>C) with Parsimony Informative Site was selected and successfully utilised to individuate the zygosity/allelic variation of 16 F. tataricum varieties. Insertion mutations were identified in coding region, which resulted the change of a stretch of 39 amino acids on the putative protein. Our Study revealed that autogamous species (F. tataricum) has lower frequency of observed SNPs as compared to allogamous species (F. dibotrys and F. esculentum). The identified SNPs in F. tataricum didn't result to amino acid change, while in other two species it caused both conservative and non-conservative variations. Consistent pattern of SNPs across the species revealed their phylogenetic importance. We found two groups of F. tataricum and one of them was closely related with F. dibotrys. Sequence characterization information of PAL gene reported in present investigation can be utilized in genetic improvement of buckwheat in reference to its medicinal value.


Subject(s)
Fagopyrum/genetics , Genome, Plant , Phenylalanine Ammonia-Lyase/genetics , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Fagopyrum/enzymology
8.
Commun Agric Appl Biol Sci ; 79(4): 211-5, 2014.
Article in English | MEDLINE | ID: mdl-26072589

ABSTRACT

The promotion of renewable energy represents a target of the European 2020 strategy for economical growth and sustainable competitiveness. Cereals are considered a promising biomass producing crop in temperate regions of Europe to be used for both fuel alcohol and biogas production. Among cereals, triticale represents a good candidate for this kind of application, showing a number of advantages such as high grain yield even in marginal environments, tolerance to drought, tolerance to more acid soils, lower production costs and lower susceptibility to biotic stresses. The aim of this study was to compare yield and quality of eight triticale lines grown in marginal areas in a two-year experiment. Italian variety, Magistral, and a bread wheat variety (EW9) were selected for comparison. Data from fields, chemical analyses and preliminary results from fermentation are reported.


Subject(s)
Biofuels , Edible Grain/physiology , Agriculture , Biomass , Conservation of Energy Resources , Italy , Seasons , Time Factors
9.
Planta ; 237(4): 967-78, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23184317

ABSTRACT

The dehydration responsive element binding (DREB) proteins are important transcription factors that contribute to stress endurance in plants triggering the expression of a set of abiotic stress-related genes. A DREB2-related gene, previously referred to as dehydration responsive factor 1 (DRF1) was originally isolated and characterized in durum wheat. The aim of this study was to monitor the expression profiles of three alternatively spliced TdDRF1 transcripts during dehydration experiments and to evaluate the effects of genetic diversity on the molecular response, using experimental conditions reflecting as closely as possible water stress perceived by cereals in open field. To investigate the effect of moderate water stress conditions, time-course dehydration experiments were carried out under controlled conditions in the greenhouse on four durum wheat and one triticale genotypes. Differences were observed in molecular patterns, thus, suggesting a genotype dependency of the DRF1 gene expression in response to the stress induced. The biodiversity of the transcripts of the DRF1 gene was explored in order to assess the level of polymorphism and its possible effects on structure and function of putative proteins. A total of nine haplotypes were identified in the sequences cloned, seven of which encompassing polymorphisms in exon 4, including the region codifying for the DNA binding Apetala2 (AP2) domain. The 3D structural models of the AP2 domain were generated by homology modelling using the variability observed. The polymorphisms analysed did not significantly affect the structural arrangement of the DNA binding domains, thus resulting compatible with the putative functionality.


Subject(s)
Plant Proteins/metabolism , Stress, Physiological , Transcription Factors/metabolism , Triticum/metabolism , Amino Acid Sequence , Genetic Variation , Genotype , Molecular Sequence Data , Plant Proteins/genetics , Structural Homology, Protein , Transcription Factors/genetics , Triticum/genetics , Water/physiology
10.
BMC Microbiol ; 11: 228, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-21995705

ABSTRACT

BACKGROUND: A close association between maize roots and Burkholderia cepacia complex (BCC) bacteria has been observed in different locations globally. In this study we investigated by MultiLocus Restriction Typing (MLRT) the genetic diversity and relationships among Burkholderia cenocepacia IIIB and BCC6 populations associated with roots of maize plants cultivated in geographically distant countries (Italy and Mexico), in order to provide new insights into their population structure, evolution and ecology. RESULTS: The 31 B. cenocepacia IIIB and 65 BCC6 isolates gave rise to 29 and 39 different restriction types (RTs), respectively. Two pairs of isolates of B. cenocepacia IIIB and BCC6, recovered from both Italian and Mexican maize rhizospheres, were found to share the same RT. The eBURST (Based Upon Related Sequence Types) analysis of MLRT data grouped all the B. cenocepacia IIIB isolates into four clonal complexes, with the RT-4-complex including the 42% of them, while the majority of the BCC6 isolates (94%) were grouped into the RT-104-complex. These two main clonal complexes included RTs shared by both Italian and Mexican maize rhizospheres and a clear relationship between grouping and maize variety was also found. Grouping established by eBURST correlated well with the assessment using unweighted-pair group method with arithmetic mean (UPGMA). The standardized index of association values obtained in both B. cenocepacia IIIB and BCC6 suggests an epidemic population structure in which occasional clones emerge and spread. CONCLUSIONS: Taken together our data demonstrate a wide dispersal of certain B. cenocepacia IIIB and BCC6 isolates in Mexican and Italian maize rhizospheres. Despite the clear relationship found between the geographic origin of isolates and grouping, identical RTs and closely related isolates were observed in geographically distant regions. Ecological factors and selective pressure may preferably promote some genotypes within each local microbial population, favouring the spread of a single clone above the rest of the recombinant population.


Subject(s)
Burkholderia cenocepacia/genetics , Rhizosphere , Soil Microbiology , Zea mays/microbiology , Alleles , Burkholderia cenocepacia/isolation & purification , DNA, Bacterial/genetics , Genetic Variation , Italy , Linkage Disequilibrium , Mexico , Plant Roots/microbiology , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA
11.
J Struct Biol ; 164(1): 119-33, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18662789

ABSTRACT

The recombinant antibody fragment scFv(F8), which recognizes the coat protein of the plant virus AMCV, is characterized by peculiar high in vitro stability and functional folding even in reducing environments, making it fit for designing stable antibodies with desired properties. Mutagenesis and functional analysis evidenced two residues, at positions 47 and 58 of the V(H) chain, playing a crucial role in the antigen binding recognition. Here, we used a computational procedure to assess the effects of these mutations on the stability, structure and dynamics of the antigen-binding site. Structural models of the wild type scFv(F8) and of its H47 and H58 mutants were built by homology modelling and assessed by multiple 15.5ns of molecular dynamics simulations. Computational results indicate that the 47H substitution strongly affects the CDR-H(2) conformation, destabilizes the V(H)/V(L) interface and confers high conformational flexibility to the antigen-binding site, leading the mutant to functional loss. The mutation at position H58 strenghtens the binding site, bestowing a high antigen specificity on the mutant. The essential dynamics and the analysis of the protein-solvent interface further corroborate the correspondence between the extent of the structurally-determined flexibility of the binding site with the different functional behaviours proved by the wild-type and its mutants. These results may have useful implications for structure-based design of antibody combining site.


Subject(s)
Binding Sites, Antibody/genetics , Immunoglobulin Variable Region/chemistry , Plant Viruses/immunology , Protein Engineering/methods , Computer Simulation , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Models, Molecular , Protein Conformation , Protein Stability
12.
J Transl Med ; 4: 39, 2006 Sep 29.
Article in English | MEDLINE | ID: mdl-17010186

ABSTRACT

BACKGROUND: Aberrant signaling by ErbB-2 (HER 2, Neu), a member of the human Epidermal Growth Factor (EGF) receptor family, is associated with an aggressive clinical behaviour of carcinomas, particularly breast tumors. Antibodies targeting the ErbB-2 pathway are a preferred therapeutic option for patients with advanced breast cancer, but a worldwide deficit in the manufacturing capacities of mammalian cell bioreactors is foreseen. METHODS: Herein, we describe a multi-platform approach for the production of recombinant Single chain Fragments of antibody variable regions (ScFvs) to ErbB-2 that involves their functional expression in (a) bacteria, (b) transient as well as stable transgenic tobacco plants, and (c) a newly developed cell-free transcription-translation system. RESULTS: An ScFv (ScFv800E6) was selected by cloning immunoglobulin sequences from murine hybridomas, and was expressed and fully functional in all the expression platforms, thereby representing the first ScFv to ErbB-2 produced in hosts other than bacteria and yeast. ScFv800E6 was optimized with respect to redox synthesis conditions. Different tags were introduced flanking the ScFv800E6 backbone, with and without spacer arms, including a novel Strep II tag that outperforms conventional streptavidin-based detection systems. ScFv800E6 was resistant to standard chemical radiolabeling procedures (i.e. Chloramine T), displayed a binding ability extremely similar to that of the parental monovalent Fab' fragment, as well as a flow cytometry performance and an equilibrium binding affinity (Ka approximately 2 x 10(8) M(-1)) only slightly lower than those of the parental bivalent antibody, suggesting that its binding site is conserved as compared to that of the parental antibody molecule. ScFv800E6 was found to be compatible with routine reagents for immunohistochemical staining. CONCLUSION: ScFv800E6 is a useful reagent for in vitro biochemical and immunodiagnostic applications in oncology, and a candidate for future in vivo studies.

13.
Res Microbiol ; 156(10): 974-83, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16085398

ABSTRACT

Burkholderia cepacia complex (Bcc) bacteria are naturally present in the rhizosphere of several crop plants and have been found to antagonize a wide range of important plant pathogens. In this study, we evaluated the effect of the pathogenic fungus Fusarium verticillioides on Bcc populations recovered from the roots of Zea mays plants. Maize plants were cultivated under greenhouse conditions and bacterial colonies were randomly isolated from distinct root portions of Fusarium-treated and control plants. We obtained a total of 120 Bcc isolates which all belonged to the species Burkholderia cenocepacia, a species of the Bcc widely distributed in natural habitats such as the rhizosphere of several crop plants. Results obtained revealed that the presence of the plant pathogen F. verticillioides had an effect at the root colonization level of B. cenocepacia populations, since an increase in indigenous B. cenocepacia bacteria was found in the rhizospheres of maize plants grown in infested soil, compared to the rhizospheres of control plants. The analysis of diversity indices as well as the investigation of genetic polymorphism of B. cenocepacia strains, isolated from Fusarium-treated and control root portions, revealed greater genetic variability in the presence of F. verticillioides, especially in the terminal root system portion. Finally, all B. cenocepacia isolates were also tested for in vitro inhibition of F. verticillioides growth as a functional property. Our results revealed that all B. cenocepacia isolates were able to restrict in vitro fungal growth, suggesting that there was no relationship between genetic polymorphism and biocontrol traits.


Subject(s)
Antibiosis , Burkholderia cepacia complex/classification , Burkholderia cepacia complex/growth & development , Fusarium/growth & development , Plant Roots/microbiology , Zea mays/microbiology , Burkholderia cepacia complex/genetics , Colony Count, Microbial , DNA, Bacterial/analysis , Genetic Variation , Haplotypes , Plant Diseases/microbiology , Random Amplified Polymorphic DNA Technique , Soil/analysis , Soil Microbiology , Zea mays/growth & development
14.
Protein Expr Purif ; 44(1): 10-5, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16125411

ABSTRACT

Recombinant antibody fragments represent useful tools for cancer diagnosis and therapy. Aberrant expression of the HER2 receptor is implicated in metastatic breast and ovary cancers, two malignancies with a high prevalence in young women. In this study, we focussed on a single-chain fragment of variable antibody regions specific for HER2 (scFv800E6) that can be expressed in a functional form in the cytoplasm of Escherichia coli. ScFv800E6 was extracted from bacterial cultures following induction at different temperatures and purified. The yield of both soluble and insoluble forms was measured. We found that scFv800E6 was functional when expressed in the soluble fraction in the bacteria cytosol. In addition, scFv800E6 extracted from inclusion bodies was easily refolded and largely recovered its functionality. Thus, scFv800E6 is intrinsically capable of efficient and functional folding in a reducing environment and represents one of the few described antibody fragments with a framework well adapted for cytoplasmic expression.


Subject(s)
Antibodies, Monoclonal/genetics , Escherichia coli , Gene Expression , Immunoglobulin Variable Region/genetics , Receptor, ErbB-2 , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Escherichia coli/genetics , Escherichia coli/growth & development , Gene Expression/genetics , Humans , Immunoglobulin Variable Region/immunology , Immunoglobulin Variable Region/isolation & purification , Mice , Oxidation-Reduction , Receptor, ErbB-2/genetics , Receptor, ErbB-2/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...