Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 72(4): 1166-1180, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33080022

ABSTRACT

Although widely used in ecology, trait-based approaches are seldom used to study agroecosystems. In particular, there is a need to evaluate how functional trait variability among varieties of a crop species compares to the variability among wild plant species and how variety selection can modify trait syndromes. Here, we quantified 18 above- and below-ground functional traits for 57 varieties of common wheat representative of different modern selection histories. We compared trait variability among varieties and among Pooideae species, and analyzed the effect of selection histories on trait values and trait syndromes. For traits under strong selection, trait variability among varieties was less than 10% of the variability observed among Pooideae species. However, for traits not directly selected, such as root N uptake capacity, the variability was up to 75% of the variability among Pooideae species. Ammonium absorption capacity by roots was counter-selected for conventional varieties compared with organic varieties and landraces. Artificial selection also altered some trait syndromes classically reported for Pooideae. Identifying traits that have high or low variability among varieties and characterizing the hidden effects of selection on trait values and syndromes will benefit the selection of varieties to be used especially for lower N input agroecosystems.


Subject(s)
Ecology , Triticum , Phenotype , Syndrome , Triticum/genetics
2.
Ecol Evol ; 8(16): 8573-8581, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30250724

ABSTRACT

Plants adopt a variety of life history strategies to succeed in the Earth's diverse environments. Using functional traits which are defined as "morphological, biochemical, physiological, or phonological" characteristics measurable at the individual level, plants are classified according to their species' adaptative strategies, more than their taxonomy, from fast growing plant species to slower-growing conservative species. These different strategies probably influence the input and output of carbon (C)-resources, from the assimilation of carbon by photosynthesis to its release in the rhizosphere soil via root exudation. However, while root exudation was known to mediate plant-microbe interactions in the rhizosphere, it was not used as functional trait until recently. Here, we assess whether root exudate levels are useful plant functional traits in the classification of plant nutrient-use strategies and classical trait syndromes? For this purpose, we conducted an experiment with six grass species representing along a gradient of plant resource-use strategies, from conservative species, characterized by low biomass nitrogen (N) concentrations and a long lifespans, to exploitative species, characterized by high rates of photosynthesis and rapid rates of N acquisition. Leaf and root traits were measured for each grass and root exudate rate for each planted soil sample. Classical trait syndromes in plant ecology were found for leaf and root traits, with negative relationships observed between specific leaf area and leaf dry matter content or between specific root length and root dry matter content. However, a new root trait syndrome was also found with root exudation levels correlating with plant resource-use strategy patterns, specifically, between root exudation rate and root dry matter content. We therefore propose root exudation rate can be used as a key functional trait in plant ecology studies and plant strategy classification.

3.
Front Microbiol ; 9: 3102, 2018.
Article in English | MEDLINE | ID: mdl-30619181

ABSTRACT

Metal-oxide nanoparticles (NPs) such as copper oxide (CuO) NPs offer promising perspectives for the development of novel agro-chemical formulations of pesticides and fertilizers. However, their potential impact on agro-ecosystem functioning still remains to be investigated. Here, we assessed the impact of CuO-NPs (0.1, 1, and 100 mg/kg dry soil) on soil microbial activities involved in the carbon and nitrogen cycles in five contrasting agricultural soils in a microcosm experiment over 90 days. Additionally, in a pot experiment, we evaluated the influence of plant presence on the toxicity of CuO-NPs on soil microbial activities. CuO-NPs caused significant reductions of the three microbial activities measured (denitrification, nitrification, and soil respiration) at 100 mg/kg dry soil, but the low concentrations (0.1 and 1 mg/kg) had limited effects. We observed that denitrification was the most sensitive microbial activity to CuO-NPs in most soil types, while soil respiration and nitrification were mainly impacted in coarse soils with low organic matter content. Additionally, large decreases in heterotrophic microbial activities were observed in soils planted with wheat, even at 1 mg/kg for soil substrate-induced respiration, indicating that plant presence did not mitigate or compensate CuO-NP toxicity for microorganisms. These two experiments show that CuO-NPs can have detrimental effects on microbial activities in soils with contrasting physicochemical properties and previously exposed to various agricultural practices. Moreover, we observed that the negative effects of CuO-NPs increased over time, indicating that short-term studies (hours, days) may underestimate the risks posed by these contaminants in soils.

4.
FEMS Microbiol Ecol ; 93(4)2017 04 01.
Article in English | MEDLINE | ID: mdl-28334144

ABSTRACT

The aim of this study was to determine (i) whether plant nutritional strategy affects the composition of primary metabolites exuded into the rhizosphere and (ii) the impact of exuded metabolites on denitrification activity in soil. We answered this question by analysing primary metabolite content extracted from the root-adhering soil (RAS) and the roots of three grasses representing different nutrient management strategies: conservative (Festuca paniculata), intermediate (Bromus erectus) and exploitative (Dactylis glomerata). We also investigated the impact of primary metabolites on soil microbial denitrification enzyme activity without carbon addition, comparing for each plant RAS and bulk soils. Our data show that plant nutritional strategy impacts on primary metabolite composition of root extracts or RAS. Further we show, for the first time, that RAS-extracted primary metabolites are probably better indicators to explain plant nutrient strategy than root-extracted ones. In addition, our results show that some primary metabolites present in the RAS were well correlated with soil microbial denitrification activity with positive relationships found between denitrification and the presence of some organic acids and negative ones with the presence of xylose. We demonstrated that the analysis of primary metabolites extracted from the RAS is probably more pertinent to evaluate the impact of plant on soil microbial community functioning.


Subject(s)
Plant Physiological Phenomena , Rhizosphere , Soil Microbiology , Carbon/metabolism , Denitrification , Plant Roots/metabolism , Poaceae/metabolism , Soil
5.
Ecology ; 96(3): 788-99, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26236874

ABSTRACT

It has long been recognized that plant species and soil microorganisms. are tightly linked, but understanding how different species vary in their effects on soil is currently limited. In this study, we identified those. plant characteristics (identity, specific functional traits, or resource acquisition strategy) that were the best predictors of nitrification and denitrification processes. Ten plant populations representing eight species collected from three European grassland sites were chosen for their contrasting plant trait values and resource acquisition strategies. For each individual plant, leaf and root traits and the associated potential microbial activities (i.e., potential denitrification rate [DEA], maximal nitrification rate [NEA], and NH4+ affinity of the microbial community [NHScom]) were measured at two fertilization levels under controlled growth conditions. Plant traits were powerful predictors of plant-microbe interactions, but relevant plant traits differed in relation to the microbial function studied. Whereas denitrification was linked to the relative growth rate of plants, nitrification was strongly correlated to root trait characteristics (specific root length, root nitrogen concentration, and plant affinity for NH4+) linked to plant N cycling. The leaf economics spectrum (LES) that commonly serves as an indicator of resource acquisition strategies was not correlated to microbial activity. These results suggest that the LES alone is not a good predictor of microbial activity, whereas root traits appeared critical in understanding plant-microbe interactions.


Subject(s)
Achillea/physiology , Nitrogen/metabolism , Poaceae/physiology , Soil Microbiology , Austria , Denitrification , England , France , Nitrification , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...