Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Cycl Agroecosyst ; 127(3): 375-392, 2023.
Article in English | MEDLINE | ID: mdl-38025204

ABSTRACT

Soil nitrous oxide (N2O) fluxes comprise a significant part of the greenhouse gas emissions of agricultural products but are spatially and temporally variable, due to complex interactions between climate, soil and management variables. This study aimed to identify the main factors that affect N2O emissions under sugarcane, using a multi-site database from field experiments. Greenhouse gas fluxes, soil, climate, and management data were obtained from 13 field trials spanning the 2011-2017 period. We conducted exploratory, descriptive and inferential data analyses in experiments with varying fertiliser and stillage (vinasse) type and rate, and crop residue rates. The most relevant period of high N2O fluxes was the first 46 days after fertiliser application. The results indicate a strong positive correlation of cumulative N2O with nitrogen (N) fertiliser rate, soil fungi community (18S rRNA gene), soil ammonium (NH4+) and nitrate (NO3-); and a moderate negative correlation with amoA genes of ammonia-oxidising archaea (AOA) and soil organic matter content. The regression analysis revealed that easily routinely measured climate and management-related variables explained over 50% of the variation in cumulative N2O emissions, and that additional soil chemical and physical parameters improved the regression fit with an R2 = 0.65. Cross-wavelet analysis indicated significant correlations of N2O fluxes with rainfall and air temperature up to 64 days, associated with temporal lags of 2 to 4 days in some experiments, and presenting a good environmental control over fluxes in general. The nitrogen fertiliser mean emission factors ranged from 0.03 to 1.17% of N applied, with urea and ammonium nitrate plus vinasse producing high emissions, while ammonium sulphate, ammonium nitrate without vinasse, calcium nitrate, and mitigation alternatives (nitrification inhibitors and timing of vinasse application) producing low N2O-EFs. Measurements from multiple sites spanning several cropping seasons were useful for exploring the influence of environmental and management-related variables on soil N2O emissions in sugarcane production, providing support for global warming mitigation strategies, nitrogen management policies, and increased agricultural input efficiency. Supplementary Information: The online version contains supplementary material available at 10.1007/s10705-023-10321-w.

2.
Microbiome ; 6(1): 142, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30103819

ABSTRACT

BACKGROUND: Vinasse, a by-product of sugarcane ethanol production, is recycled by sugarcane plantations as a fertilizer due to its rich nutrient content. However, the impacts of the chemical and microbial composition of vinasse on soil microbiome dynamics are unknown. Here, we evaluate the recovery of the native soil microbiome after multiple disturbances caused by the application of organic vinasse residue, inorganic nitrogen, or a combination of both during the sugarcane crop-growing season (389 days). Additionally, we evaluated the resistance of the resident soil microbial community to the vinasse microbiome. RESULTS: Vinasse applied alone or 30 days prior to N resulted in similar changes in the soil microbial community. Furthermore, the impact of the application of vinasse together with N fertilizer on the soil microbial community differed from that of N fertilizer alone. Organic vinasse is a source of microbes, nutrients, and organic matter, and the combination of these factors drove the changes in the resident soil microbial community. However, these changes were restricted to a short period of time due to the capacity of the soil community to recover. The invasive bacteria present in the vinasse microbiome were unable to survive in the soil conditions and disappeared after 31 days, with the exception of the Acetobacteraceae (native in the soil) and Lactobacillaceae families. CONCLUSION: Our analysis showed that the resident soil microbial community was not resistant to vinasse and inorganic N application but was highly resilient.


Subject(s)
Bacteria/growth & development , Saccharum/growth & development , Solid Waste/adverse effects , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Metagenomics , Nitrogen/adverse effects , RNA, Ribosomal, 16S/genetics , Recycling/methods , Saccharum/chemistry , Soil Microbiology
3.
Bioresour Technol ; 101(12): 4690-6, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20171093

ABSTRACT

The utilization of tannery sludge in agricultural areas can be an alternative for its disposal and recycling. Despite this procedure may cause the loss of nitrogen by ammonia volatilization, there is no information about this process in tropical soils. For two years a field experiment was carried out in Rolândia (Paraná State, Brazil), to evaluate the amount of NH(3) volatilization due to tannery sludge application on agricultural soil. The doses of total N applied varied from zero to 1200 kg ha(-1), maintained at the surface for 89 days, as usual in this region. The alkalinity of the tannery sludge used was equivalent to between 262 and 361 g CaCO(3) per kg. Michaelis-Menten equation was adequate to estimate NH(3)-N volatilization kinetics. The relation between total nitrogen applied as tannery sludge and the potentially volatilized NH(3)-N, calculated by the chemical-kinetics equation resulted in an average determination coefficient of 0.87 (P>0.01). In this period, the amount of volatilized NH(3) was more intense during the first 30 days; the time to reach half of the maximum NH(3) volatilization (K(m)) was 13 an 9 days for the first and second experiments, respectively. The total loss as ammonia in the whole period corresponded in average to 17.5% of the total N applied and to 35% of the NH(4)(+)-N present in the sludge. If tannery sludge is to be surface applied to supply N for crops, the amounts lost as NH(3) must be taken into consideration.


Subject(s)
Ammonia/analysis , Industrial Waste/analysis , Sewage/chemistry , Soil/analysis , Tanning , Biodegradation, Environmental , Brazil , Hydrogen-Ion Concentration , Nitrogen/analysis , Sewage/microbiology , Soil Microbiology , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...