Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 10(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39057489

ABSTRACT

In this work, polyurethane (PUR) aerogels doped with different SiO2 particles, derived from a renewable source, were successfully synthesized, and the effects of SiO2 content on the properties of PUR aerogels were investigated. Specifically, three types of SiO2-based particles obtained from rice husk through different procedures were evaluated to enhance the thermal stability of the composites with special attention given to flame-retardant properties. With the optimal SiO2 particles, obtained through acid digestion, the influence of their content between 0.5 and 3 wt.% on the physicochemical characteristics of the synthesized aerogels was thoroughly examined. The results showed that increasing the doping agent content improved the lightness, thermal stability, and flame-retardant properties of the resulting PUR aerogels, with the best performance observed at a 2 wt.% doping level. The doped aerogel samples with non-modified SiO2 particles significantly enhanced the fire safety performance of the material, exhibiting up to an eightfold increase in flame retardancy. However, modification of the SiO2 particles with phytic acid did not slow down the combustion velocity when filling the aerogels. This research highlights the promising potential of doped PUR/SiO2 aerogels in advancing materials science and engineering applications for withstanding high temperatures and improving fire safety.

2.
Gels ; 10(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38534627

ABSTRACT

This research presents a novel approach to synthesising polyurethane (PUR)-based aerogels at the pilot scale, optimizing synthesis variables such as the gelation solvent, solids content, chain extender/isocyanate ratio, and dispersion mode. The solids content (2-11 wt.%) is the parameter with the most influence on the density of the aerogels, with a clear decrease in this property as the solids content decreases. On the other hand, it was demonstrated that minimizing the excess of ethylenediamine (used as chain extender) in relation to the isocyanate is a valuable consideration to improve the thermal conductivity of the aerogel. Related to the chain extender/isocyanate ratio, a compromise situation where the initial isocyanate reacts almost completely is crucial. Fourier-transform infrared spectroscopy was used to conduct such monitoring during the reaction. Once the conditions were optimised, the aerogel showing improved properties was synthesised using ethyl acetate as the gelling solvent, a 3.7 wt.% solids content, an ethylenediamine/isocyanate ratio of 0.20, and sonication as the dispersion mode, attaining a thermal conductivity of 0.030 W m-1 K-1 and a density of 0.046 g cm-3. Therefore, the synthesized aerogel emerges as a promising candidate for use in the construction and automotive industries.

SELECTION OF CITATIONS
SEARCH DETAIL
...