Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Placenta ; 29(6): 492-502, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18420268

ABSTRACT

The syncytiotrophoblast of the human placenta arises from fusion of stem cells called cytotrophoblasts. The molecular mechanisms associated with cell fusion and syncytiation of cytotrophoblastic cells remain largely unknown. In the present study, we investigated the morphological and electrical properties of BeWo cells, a human choriocarcinoma-derived trophoblast cell model, with several features of the human cytotrophoblast. Cultured cells tended to cluster, but only fused into small, multinucleated syncytia in the presence of cAMP (72 h). The morphological features of both the actin and microtubular cytoskeletons indicated that within 72 h of constant exposure to cAMP, intracellular cortical actin cytoskeleton disappeared, which was the most prominent inducing factor of multi-nucleation. The presence of the cation channel protein, polycystin-2 (PC2), a TRP-type cation channel, associated with placental ion transport in term human syncytiotrophoblast, co-localised with acetylated tubulin in midbodies, but was found non-functional under any conditions. Different electrical phenotypes were observed among control BeWo cells, where only 26% (8 of 31 cells) displayed a voltage-dependent outwardly rectifying conductance. Most quiescent BeWo cells had, however, a low, slightly outwardly rectifying basal whole cell conductance. Acute exposure to intracellular cAMP (<15 min) increased the whole cell conductance by 122%, from 0.72 nS/cell to 1.60 nS/cell, and eliminated the voltage-regulated conductance. The encompassed evidence indicates that the early events in BeWo cell fusion and syncytiation occur by cAMP-associated changes in ionic conductance but not morphological changes associated to chronic exposure to the second messenger. This suggests a tight regulation, and important contribution of cation conductances in cytotrophoblastic cells prior to syncytiation.


Subject(s)
Choriocarcinoma/physiopathology , Trophoblasts/pathology , Trophoblasts/physiology , Uterine Neoplasms/physiopathology , Cell Line, Tumor , Choriocarcinoma/pathology , Cyclic AMP/pharmacology , Cytoskeleton/metabolism , Cytoskeleton/pathology , Electrophysiology , Female , Humans , Immunohistochemistry , Membrane Potentials/drug effects , Pregnancy , Uterine Neoplasms/pathology
2.
Placenta ; 29(6): 510-8, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18417208

ABSTRACT

Pregnancy is often associated with oxidative stress (OS) and lower antioxidant defences, which are both implicated in the pathophysiology of preeclampsia, free radical-induced birth defects, and abortions, as well as gestational diabetes mellitus (GDM), where products of lipid peroxidation are increased. The molecular target(s) of increased oxygen free radicals and consequent lipid peroxidation in the human placenta remains ill defined. The human syncytiotrophoblast (hST) expresses abundant polycystin-2 (PC2, TRPP2), a TRP-type Ca(2+)-permeable non-selective cation channel. Here, we explored the effect of reactive oxygen species (ROS) on PC2 channel activity of term hST. Apical membranes of the hST were reconstituted in a lipid bilayer chamber. Addition of either hydrogen-peroxide (H(2)O(2)) or tert-butyl hydroperoxide (tBHP) to the cis chamber (intracellular side) rapidly and completely inhibited PC2-mediated cation channel activity in reconstituted hST vesicles. A dose-response titration with increasing concentrations of H(2)O(2) gave an IC(50)=131 nM. The effect of H(2)O(2) on the isolated protein from in vitro transcribed/translated material was significantly different. H(2)O(2) inhibited PC2 cation channel activity, with a much lower affinity (IC(50)=193 microM). To correlate these findings with H(2)O(2)-induced lipid peroxidation, TBARS where measured in hST apical membranes incubated with H(2)O(2). Increased TBARS by exposure of hST apical membranes to H(2)O(2) (625 microM) returned to control value in the presence of catalase (167 microg/ml). Taken together these data indicate that ROS affect PC2 channel function by targetting both membrane lipids and the channel protein. Thus, OS in human pregnancy may be linked to dysregulation of channels such as PC2, which allow the transport of Ca(2+) into the placenta. Oxidative complications in pregnancy may implicate dysfunctional cation transfer between mother and fetus.


Subject(s)
Reactive Oxygen Species/pharmacology , TRPP Cation Channels/antagonists & inhibitors , Term Birth/metabolism , Trophoblasts/drug effects , Electrophysiology , Female , Humans , Hydrogen Peroxide/pharmacology , Lipid Peroxidation/drug effects , Potassium Channels/metabolism , Potassium Channels/physiology , Pregnancy , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , TRPP Cation Channels/metabolism , Trophoblasts/metabolism , tert-Butylhydroperoxide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...