Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Stem Cell Res Ther ; 15(1): 278, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39227908

ABSTRACT

BACKGROUND: The immunomodulatory oligodeoxynucleotide (ODN) IMT504 might harbor antifibrotic properties within the liver. METHODS: Fibrosis models were induced in mice through thioacetamide (TAA) administration and bile-duct ligation. Cre-loxP mice were utilized to identify GLAST + Wnt1 + bone marrow stromal progenitors (BMSPs) and to examine their contribution with cells in the liver. In vivo and in vitro assays; flow-cytometry, immunohistochemistry, and qPCR were conducted. RESULTS: IMT504 demonstrated significant inhibition of liver fibrogenesis progression and reversal of established fibrosis. Early responses to IMT504 involved the suppression of profibrogenic and proinflammatory markers, coupled with an augmentation of hepatocyte proliferation. Additionally, this ODN stimulated the proliferation and mobilization of GLAST + Wnt1 + BMSPs, likely amplifying their contribution with endothelial- and hepatocytes-like cells. Moreover, IMT504 significantly modulated the expression levels of Wnt ligands and signaling pathway/target genes specifically within GLAST + Wnt1 + BMSPs, with minimal impact on other BMSPs. Intriguingly, both IMT504 and conditioned media from IMT504-pre-treated GLAST + Wnt1 + BMSPs shifted the phenotype of fibrotic macrophages, hepatic stellate cells, and hepatocytes, consistent with the potent antifibrotic effects observed. CONCLUSION: In summary, our findings identify IMT504 as a promising candidate molecule with potent antifibrotic properties, operating through both direct and indirect mechanisms, including the activation of GLAST + Wnt1 + BMSPs.


Subject(s)
Liver Cirrhosis , Mesenchymal Stem Cells , Wnt1 Protein , Animals , Mice , Liver Cirrhosis/pathology , Liver Cirrhosis/drug therapy , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Wnt1 Protein/metabolism , Wnt1 Protein/genetics , Liver/drug effects , Liver/pathology , Liver/metabolism , Oligodeoxyribonucleotides/pharmacology , Male , Mice, Inbred C57BL , Hepatocytes/metabolism , Hepatocytes/drug effects , Thioacetamide
2.
Stem Cell Res Ther ; 15(1): 208, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992782

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) tropism for tumours allows their use as carriers of antitumoural factors and in vitro transcribed mRNA (IVT mRNA) is a promising tool for effective transient expression without insertional mutagenesis risk. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine with antitumor properties by stimulating the specific immune response. The aim of this work was to generate modified MSCs by IVT mRNA transfection to overexpress GM-CSF and determine their therapeutic effect alone or in combination with doxorubicin (Dox) in a murine model of hepatocellular carcinoma (HCC). METHODS: DsRed or GM-CSF IVT mRNAs were generated from a cDNA template designed with specific primers followed by reverse transcription. Lipofectamine was used to transfect MSCs with DsRed (MSC/DsRed) or GM-CSF IVT mRNA (MSC/GM-CSF). Gene expression and cell surface markers were determined by flow cytometry. GM-CSF secretion was determined by ELISA. For in vitro experiments, the J774 macrophage line and bone marrow monocytes from mice were used to test GM-CSF function. An HCC model was developed by subcutaneous inoculation (s.c.) of Hepa129 cells into C3H/HeN mice. After s.c. injection of MSC/GM-CSF, Dox, or their combination, tumour size and mouse survival were evaluated. Tumour samples were collected for mRNA analysis and flow cytometry. RESULTS: DsRed expression by MSCs was observed from 2 h to 15 days after IVT mRNA transfection. Tumour growth remained unaltered after the administration of DsRed-expressing MSCs in a murine model of HCC and MSCs expressing GM-CSF maintained their phenotypic characteristic and migration capability. GM-CSF secreted by modified MSCs induced the differentiation of murine monocytes to dendritic cells and promoted a proinflammatory phenotype in the J774 macrophage cell line. In vivo, MSC/GM-CSF in combination with Dox strongly reduced HCC tumour growth in C3H/HeN mice and extended mouse survival in comparison with individual treatments. In addition, the tumours in the MSC/GM-CSF + Dox treated group exhibited elevated expression of proinflammatory genes and increased infiltration of CD8 + T cells and macrophages. CONCLUSIONS: Our results showed that IVT mRNA transfection is a suitable strategy for obtaining modified MSCs for therapeutic purposes. MSC/GM-CSF in combination with low doses of Dox led to a synergistic effect by increasing the proinflammatory tumour microenvironment, enhancing the antitumoural response in HCC.


Subject(s)
Carcinoma, Hepatocellular , Doxorubicin , Granulocyte-Macrophage Colony-Stimulating Factor , Liver Neoplasms , Mesenchymal Stem Cells , RNA, Messenger , Animals , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Mesenchymal Stem Cells/metabolism , Mice , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Liver Neoplasms/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Cell Line, Tumor , Mesenchymal Stem Cell Transplantation/methods , Humans , Mice, Inbred C3H , Transfection
3.
Int J Mol Sci ; 24(19)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37834291

ABSTRACT

The severity of non-alcoholic fatty liver disease (NAFLD) ranges from simple steatosis to steatohepatitis, and it is not yet clearly understood which patients will progress to liver fibrosis or cirrhosis. SPARC (Secreted Protein Acidic and Rich in Cysteine) has been involved in NAFLD pathogenesis in mice and humans. The aim of this study was to investigate the role of SPARC in inflammasome activation, and to evaluate the relationship between the hepatic expression of inflammasome genes and the biochemical and histological characteristics of NAFLD in obese patients. In vitro studies were conducted in a macrophage cell line and primary hepatocyte cultures to assess the effect of SPARC on inflammasome. A NAFLD model was established in SPARC knockout (SPARC-/-) and SPARC+/+ mice to explore inflammasome activation. A hepatic RNAseq database from NAFLD patients was analyzed to identify genes associated with SPARC expression. The results were validated in a prospective cohort of 59 morbidly obese patients with NAFLD undergoing bariatric surgery. Our results reveal that SPARC alone or in combination with saturated fatty acids promoted IL-1ß expression in cell cultures. SPARC-/- mice had reduced hepatic inflammasome activation during the progression of NAFLD. NAFLD patients showed increased expression of SPARC, NLRP3, CASP1, and IL-1ß. Gene ontology analysis revealed that genes positively correlated with SPARC are linked to inflammasome-related pathways during the progression of the disease, enabling the differentiation of patients between steatosis and steatohepatitis. In conclusion, SPARC may play a role in hepatic inflammasome activation in NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Obesity, Morbid , Animals , Humans , Mice , Inflammasomes/metabolism , Liver/metabolism , Liver Cirrhosis/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/complications , Obesity, Morbid/metabolism , Osteonectin/genetics , Osteonectin/metabolism , Prospective Studies
4.
Int J Mol Sci ; 22(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064584

ABSTRACT

Liver fibrosis results from many chronic injuries and may often progress to cirrhosis and hepatocellular carcinoma (HCC). In fact, up to 90% of HCC arise in a cirrhotic liver. Conversely, stress is implicated in liver damage, worsening disease outcome. Hence, stress could play a role in disrupting liver homeostasis, a concept that has not been fully explored. Here, in a murine model of TAA-induced liver fibrosis we identified nerve growth factor (NGF) to be a crucial regulator of the stress-induced fibrogenesis signaling pathway as it activates its receptor p75 neurotrophin receptor (p75NTR), increasing liver damage. Additionally, blocking the NGF decreased liver fibrosis whereas treatment with recombinant NGF accelerated the fibrotic process to a similar extent than stress challenge. We further show that the fibrogenesis induced by stress is characterized by specific changes in the hepatoglycocode (increased ß1,6GlcNAc-branched complex N-glycans and decreased core 1 O-glycans expression) which are also observed in patients with advanced fibrosis compared to patients with a low level of fibrosis. Our study facilitates an understanding of stress-induced liver injury and identify NGF signaling pathway in early stages of the disease, which contributes to the established fibrogenesis.


Subject(s)
Gene Expression Regulation , Liver Cirrhosis/pathology , Nerve Growth Factor/metabolism , Polysaccharides/metabolism , Receptors, Nerve Growth Factor/metabolism , Stress, Physiological , Thioacetamide/toxicity , Animals , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Male , Mice , Mice, Inbred C57BL , Nerve Growth Factor/genetics , Receptors, Nerve Growth Factor/genetics
5.
Apoptosis ; 26(7-8): 447-459, 2021 08.
Article in English | MEDLINE | ID: mdl-34024019

ABSTRACT

Osteosarcoma (OS) is the most frequent malignant bone tumor, affecting predominantly children. Metastases represent a major clinical challenge and an estimated 80% would present undetectable micrometastases at diagnosis. The identification of metastatic traits and molecules would impact in micrometastasis management. We demonstrated that OS LM7 metastatic cells secretome was able to induce microvascular endothelium cell rearrangements, an angiogenic-related trait. A proteomic analysis indicated a gain in angiogenic-related pathways in these cells, as compared to their parental-non-metastatic OS SAOS2 cells counterpart. Further, factors with proangiogenic functions like VEGF and PDGF were upregulated in LM7 cells. However, no differential angiogenic response was induced by LM7 cells in vivo. Regulation of the Fas-FasL axis is key for OS cells to colonize the lungs in this model. Analysis of the proteomic data with emphasis in apoptosis pathways and related processes revealed that the percentage of genes associated with those, presented similar levels in SAOS2 and LM7 cells. Further, the balance of expression levels of proteins with pro- and antiapoptotic functions in both cell types was subtle. Interestingly and of relevance to the model, Fas associated Factor 1 (FAF1), which participates in Fas signaling, was present in LM7 cells and was not detected in SAOS2 cells. The subtle differences in apoptosis-related events and molecules, together with the reported cell-survival functions of the identified angiogenic factors and the increased survival features that we observed in LM7 cells, suggest that the gain in angiogenesis-related pathways in metastatic OS cells would relate to a prosurvival switch rather to an angiogenic switch as an advantage feature to colonize the lungs. OS metastatic cells also displayed higher adhesion towards microvascular endothelium cells suggesting an advantage for tissue colonization. A gain in angiogenesis pathways and molecules does not result in major angiogenic potential. Together, our results suggest that metastatic OS cells would elicit signaling associated to a prosurvival phenotype, allowing homing into the hostile site for metastasis. During the gain of metastatic traits process, cell populations displaying higher adhesive ability to microvascular endothelium, negative regulation of the Fas-FasL axis in the lung parenchyma and a prosurvival switch, would be selected. This opens a new scenario where antiangiogenic treatments would affect cell survival rather than angiogenesis, and provides a molecular panel of expression that may help in distinguishing OS cells with different metastatic potential.


Subject(s)
Bone Neoplasms , Lung Neoplasms , Osteosarcoma , Adaptor Proteins, Signal Transducing , Apoptosis , Apoptosis Regulatory Proteins , Bone Neoplasms/genetics , Cell Line, Tumor , Cell Survival , Humans , Lung Neoplasms/genetics , Osteosarcoma/genetics , Proteomics , Secretome , Up-Regulation
6.
Sci Rep ; 11(1): 6310, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737571

ABSTRACT

Hepatocellular carcinoma (HCC) arises in the setting of advanced liver fibrosis, a dynamic and complex inflammatory disease. The tumor microenvironment (TME) is a mixture of cellular components including cancer cells, cancer stem cells (CSCs), tumor-associated macrophages (TAM), and dendritic cells (DCs), which might drive to tumor progression and resistance to therapies. In this work, we study the effects of 4-methylumbelliferone (4Mu) on TME and how this change could be exploited to promote a potent immune response against HCC. First, we observed that 4Mu therapy induced a switch of hepatic macrophages (Mϕ) towards an M1 type profile, and HCC cells (Hepa129 cells) exposed to conditioned medium (CM) derived from Mϕ treated with 4Mu showed reduced expression of several CSCs markers and aggressiveness. HCC cells incubated with CM derived from Mϕ treated with 4Mu grew in immunosuppressed mice while presented delayed tumor progression in immunocompetent mice. HCC cells treated with 4Mu were more susceptible to phagocytosis by DCs, and when DCs were pulsed with HCC cells previously treated with 4Mu displayed a potent antitumoral effect in therapeutic vaccination protocols. In conclusion, 4Mu has the ability to modulate TME into a less hostile milieu and to potentiate immunotherapeutic strategies against HCC.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Hymecromone/pharmacology , Liver Neoplasms/drug therapy , Tumor Microenvironment/drug effects , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Dendritic Cells/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic , Humans , Hymecromone/adverse effects , Immunity/drug effects , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Neoplastic Stem Cells/drug effects , Phagocytosis/drug effects , Signal Transduction/drug effects , Tumor-Associated Macrophages/drug effects , Xenograft Model Antitumor Assays
7.
Gut ; 70(7): 1362-1374, 2021 07.
Article in English | MEDLINE | ID: mdl-33106353

ABSTRACT

OBJECTIVE: The RHO family of GTPases, particularly RAC1, has been linked with hepatocarcinogenesis, suggesting that their inhibition might be a rational therapeutic approach. We aimed to identify and target deregulated RHO family members in human hepatocellular carcinoma (HCC). DESIGN: We studied expression deregulation, clinical prognosis and transcription programmes relevant to HCC using public datasets. The therapeutic potential of RAC1 inhibitors in HCC was study in vitro and in vivo. RNA-Seq analysis and their correlation with the three different HCC datasets were used to characterise the underlying mechanism on RAC1 inhibition. The therapeutic effect of RAC1 inhibition on liver fibrosis was evaluated. RESULTS: Among the RHO family of GTPases we observed that RAC1 is upregulated, correlates with poor patient survival, and is strongly linked with a prooncogenic transcriptional programme. From a panel of novel RAC1 inhibitors studied, 1D-142 was able to induce apoptosis and cell cycle arrest in HCC cells, displaying a stronger effect in highly proliferative cells. Partial rescue of the RAC1-related oncogenic transcriptional programme was obtained on RAC1 inhibition by 1D-142 in HCC. Most importantly, the RAC1 inhibitor 1D-142 strongly reduce tumour growth and intrahepatic metastasis in HCC mice models. Additionally, 1D-142 decreases hepatic stellate cell activation and exerts an anti-fibrotic effect in vivo. CONCLUSIONS: The bioinformatics analysis of the HCC datasets, allows identifying RAC1 as a new therapeutic target for HCC. The targeted inhibition of RAC1 by 1D-142 resulted in a potent antitumoural effect in highly proliferative HCC established in fibrotic livers.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Enzyme Inhibitors/pharmacology , Guanidines/therapeutic use , Liver Cirrhosis/drug therapy , Liver Neoplasms/drug therapy , rac1 GTP-Binding Protein/antagonists & inhibitors , Animals , Apoptosis/drug effects , Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/secondary , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Computational Biology , Databases, Genetic , Enzyme Inhibitors/therapeutic use , Guanidines/pharmacology , Hepatic Stellate Cells/drug effects , Hepatocytes/drug effects , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice , Molecular Targeted Therapy , Neoplasm Transplantation , Transcriptome/drug effects , rac1 GTP-Binding Protein/genetics , rho GTP-Binding Proteins/antagonists & inhibitors , rho GTP-Binding Proteins/genetics
8.
Gene Ther ; 27(1-2): 62-73, 2020 02.
Article in English | MEDLINE | ID: mdl-31551525

ABSTRACT

Extracellular vesicles (EVs) can mediate mesenchymal stromal cells (MSCs) paracrine effects. We aimed to evaluate the therapeutic potential of human umbilical cord perivascular cells (HUCPVCs) engineered to produce Insulin Growth Factor like-I (IGF-I) in experimental liver fibrosis and the role of EVs in this effect. HUCPVCs were engineered to produce human IGF-I (AdhIGF-I) or green fluorescence protein (AdGFP) using adenoviruses, and EVs were isolated from their conditioned medium (CM). In vitro effects of CM and EVs on hepatic stellate cells and hepatic macrophages were studied. Cells or EVs-based treatments were evaluated in thioacetamide-induced liver fibrosis in mice. The application of AdhIGF-I-HUCPVCs resulted in a further amelioration of liver fibrosis when compared to AdGFP-HUCPVCs and saline. Similarly, treatment with AdhIGF-I-HUCPVCs-derived EVs resulted in a reduction of collagen deposition and gene expression of the fibrogenic related molecules TGF-ß1, α-SMA, and COL1A2. In vitro incubation of hepatic stellate cells with EVs-AdhIGF-I-HUCPVCs significantly reduced activation of fibrogenic cells. In addition, EVs-AdhIGF-I-HUCPVCs trigger hepatic macrophages to switch their phenotype towards anti-inflammatory phagocytes, which might be involved in the antifibrotic effect. Consistently, high levels of IGF-I were observed within EVs-AdhIGF-I-HUCPVCs but not in controls EVs. Our results showed that hIGF-I carrying EVs could mediate the paracrine mechanism by which AdhIGF-I-HUCPVCs reduce liver fibrosis.


Subject(s)
Extracellular Vesicles/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Liver Cirrhosis/therapy , Adenoviridae/metabolism , Animals , Extracellular Vesicles/physiology , Gene Expression/genetics , Hepatocytes/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Humans , Insulin-Like Growth Factor I/metabolism , Liver/pathology , Male , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred BALB C , Transforming Growth Factor beta1/metabolism , Umbilical Cord/cytology , Umbilical Cord/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL