Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Reports ; 17(1): 1-13, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34971562

ABSTRACT

Research in low Earth orbit (LEO) has become more accessible. The 2020 Biomanufacturing in Space Symposium reviewed space-based regenerative medicine research and discussed leveraging LEO to advance biomanufacturing for regenerative medicine applications. The symposium identified areas where financial investments could stimulate advancements overcoming technical barriers. Opportunities in disease modeling, stem-cell-derived products, and biofabrication were highlighted. The symposium will initiate a roadmap to a sustainable market for regenerative medicine biomanufacturing in space. This perspective summarizes the 2020 Biomanufacturing in Space Symposium, highlights key biomanufacturing opportunities in LEO, and lays the framework for a roadmap to regenerative medicine biomanufacturing in space.


Subject(s)
Biocompatible Materials , Extraterrestrial Environment , Manufactured Materials , Regenerative Medicine , Artificial Intelligence , Automation , Bioengineering , Humans , Machine Learning , Research
2.
Tissue Eng Part B Rev ; 18(2): 139-54, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22044424

ABSTRACT

Regenerative therapies possess high theoretical potential for medical advance yet their success as commercial therapeutics is still open to debate. Appropriate data on target opportunities that provide perspective and enable strategic decision making is necessary for both efficient and effective translation. Up until now, this data have been out of reach to research scientists and many start-up companies-the very groups currently looked to for the critical advance of these therapies. The target-based estimate of opportunity presented in this report demonstrates its importance in evaluating medical need and technology feasibility. In addition, analysis of U.S. research spending, productivity, and innovation reveals that U.S. basic research in this field would benefit from greater interdisciplinarity. Overcoming the barriers that currently prevent translation into high value therapies that are quickly clinically adopted requires simultaneous integration of engineering, science, business, and clinical practice. Achieving this integration is nontrivial.


Subject(s)
Efficiency , Regenerative Medicine/economics , Regenerative Medicine/organization & administration , Biomedical Research/economics , Disease , Humans , Investments/economics , National Institutes of Health (U.S.) , Organizational Innovation/economics , Stem Cell Research/economics , Technology Transfer , Tissue Engineering/economics , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...